

CITTA' DI FERMO

Settore IV

Via Mazzini, 4 – 63900 Fermo (FM) – Tel. 0734.2841 – Fax 0734.284293 PEC: sportellourbanistica@pec.comune.fermo.it – Sito web: www.comune.fermo.it Codice fiscale e partita iva 00334990447

ACCORDO DI PROGRAMMA TRA LA PROVINCIA DI FERMO, IL COMUNE DI FERMO PER L'ATTUAZIONE DELL'INTERVENTO DENOMINATO "RIQUALIFICAZIONE AREA PIANO PARTICOLAREGGIATO N.8 – MARINA PALMENSE – IN VARIANTE AL VIGENTE P.R.G., AI SENSI DELL'ART. 34 D.LGS. N.267/2000 E S.M., ART. 26 BIS L.R. N.34/92 E S.M. E ART. 33 L.R. N.19/2023.

Oggetto: Indagine g	Elaborato All.E agg.		
Scala	Data settembre 2024	Aggiornamento giugno 2025	Stampa del 03 novembre 2025
Collaboratore esterno: Arch. Collaboratori: Geom. Ing. A	Marina Rita Marcantoni Sauro Censi Stefano Santini ntonino Loy Andrea Lanfranchi	Il Dirigente Dott. Alessandro Paccapelo	Prot. Archivio ID 43 — Disegnato da: AL/SS — Path: z:\\variante_id_43

GEOLOGO SPECIALISTA, N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

Comune di FERMO

Provincia di Fermo

Variante al Piano Particolareggiato PP8 di Marina Palmense

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE

Ascoli Piceno, 21.05.2024

Dott. Geologo Felice Cantalamessa

nº 584 Albo sezione A Ordine dei Geologi della Regione Marche

Documento Informatico firmato digitalmente al sensi del testo unico D.P.R. 28 dicembre 2000, n.445, del D.Lgs. 7 marzo 2005, n. 82 e norme collegate, il quale sostituisce il testo cartaceo e la firma autografa

COMUNE DI FERMO

Settori IV e V

Lavori Pubblici, Protezione Civile, Ambiente, Urbanistica, Patrimonio, Contratti e Appalti Via Mazzini, 4 – 63900 FERMO (FM)

DAT	I CATASTALI	TITOLO				
Foglio	-		10			
P.IIe	_	RELAZIONE GEOLOGICA E SULLE INDAGI				
02						
01						
00	PRIMA EMISSIONE		21.05.2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice
REV.	DESCRIZIONE		DATA	PREPARATO	RIESAMINATO	VALIDATO

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

SOMMARIO

PREMESSA E METODOLOGIA D'INDAGINE	pag. 3
UBICAZIONE TOPOGRAFICA E COORDINATE GEOGRAFICHE	pag. 6
INQUADRAMENTO GEOLOGICO	pag. 6
ANALISI DELLA PERICOLOSITA' GEOLOGICA	pag. 13
PIANO DELLE INDAGINI	pag. 16
LITOLOGIA E STRATIGRAFIA	Pag. 16
ANALISI DELL'ACCLIVITA'	pag. 18
SISMICA ED ANALISI DELLA PERICOLOSITA SISMICA LOCALE	pag. 18
VOCAZIONALITA'	pag. 25

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE									
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).								
02									
01									
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalan	nessa Felice			
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO				

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

ALLEGATI

- Allegato 1: Corografia, scala 1:25.000
- Allegato 2: Coordinate geografiche
- Allegato 3: Inquadramento geologico, scala 1:50.000
- Allegato 4: Carta geologica, scala 1:10.000
- Allegato 5: Inquadramento P.A.I., scala 1:10.000
- Allegato 6: Rilievo critico del reticolo idrografico minore (R.I.M.)
- Allegato 7: Microzonazione sismica livello II, scala 1: 10.000
- Allegato 8: Piano di difesa della costa (G.I.Z.C.)
- Allegato 9: Ubicazione indagini, scala 1: 1.000
- Allegato 10: Indagini geognostiche, geotecniche in sito e geofisiche reperite
- Allegato 11: Report indagini geotecniche in sito
- Allegato 12: Report indagini geofisiche
- Allegato 13: Carta litologica-tecnica, scala 1:1.000
- Allegato 14: Sezioni litologico-tecniche, scala 1:500
- Allegato 15: Carta della pericolosità geologica, scala 1:1.000
- Allegato 16: Carta clivometrica, scala 1:1.000
- Allegato 17: Carta della pericolosità sismica locale, scala 1:1.000
- Allegato 18: Carta delle vocazionalità, scala 1:1.000

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE									
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).								
02									
01									
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Canta	Cantalamessa Felice			
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	,	/ALIDATO			

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

PREMESSA E METODOLOGIA D'INDAGINE

Il sottoscritto, Dott. Geologo Felice Cantalamessa è stato incaricato dal COMUNE DI FERMO – Settore V - LLPP, Urbanistica, Edilizia e Contratti, di redigere gli studi geologici e la campagna delle indagini geotecniche e geofisiche in merito alla redazione della "Variante al Piano Particolareggiato PP8 di Marina Palmense, su area sita in località Marina Palmense nel comune di Fermo (FM)".

Lo scopo principale del presente elaborato ed i suoi allegati è quello di accertare la vocazionalità delle aree in rapporto alla destinazione d'uso prevista dal progetto di variante, attraverso l'espressione di un giudizio di fattibilità geologica mediante l'analisi e la caratterizzazione geomorfologica, idrogeologica, litologica, geotecnica e geofisica dell'area.

L'indagine non entrerà in merito a calcoli e progettazioni prettamente ingegneristiche, ma piuttosto fornirà gli input di natura geologica e geotecnica necessari alla corretta progettazione delle opere future. Successivamente, nella fase esecutiva di realizzazione delle opere, l'indagine dovrà essere ampliata e mirata, attraverso l'esecuzione di altre prove geotecniche e geofisiche, ai sensi del DM 11/03/1988, alla precisa restituzione del modello geologico, geotecnico e sismico del sito, ai sensi del D.M. 14/01/2008.

La campagna dei rilievi e delle indagini geotecniche e geofisiche è stata effettuata secondo la normativa vigente:

- le "Raccomandazioni sulla programmazione ed esecuzione delle indagini geotecniche A.G.I.
 (1977)";
- D.M. LL PP n. 47 del 11.03.1988 (G.U. 01/06/1988, S.O. n. 127) circa "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione" e relative circolari applicative (Circ. LL.PP. 24.09.1988 n. 30483) che sancisce normativa tecnica riguardante le indagini sui terreni in attuazione della Legge n. 64 del 02.02.1974;

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE									
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).								
02									
01									
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice				
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO				

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

- D.C.R. n°. 197 del 03/11/1989 "Piano Paesistico Ambientale Regionale e relative norme tecniche di attuazione e circolari esplicative";
- Circolare Regione Marche n°. 14 del 28/08/1990 (B.U.R. Marche n°. 120 del 24/09/1990), "Indirizzi e criteri per l'effettuazione di indagini geologiche in sede di adeguamento degli strumento urbanistici al P.P.A.R. e alla L.R. 33/84.Guida per la definizione di unità litotecniche"
- Circolare Regione Marche n°. 15 del 28/08/1990 (B.U.R. Marche n°. 120 del 24/09/1990),
 "Relazione tecnico illustrativa Circolare L.R 33/84 ARTT. 10, 11".
- D.M. 17/01/2018 recante "Aggiornamento delle norme tecniche per le costruzioni", pubblicato in G.U. 42 del 20/02/2018 S.O. n.8).
- Circolare 21 gennaio 2019, n. 7 C.S.LL.PP. Istruzioni per l'applicazione dell'Aggiornamento delle "Norme tecniche per le costruzioni", di cui al decreto ministeriale 17 gennaio 2018.
- D.G.R. n. 1142 del 19 settembre 2022 recante "Aggiornamento dell'elenco delle zone sismiche della Regione Marche".
- Decreto Segretariale n. 140 del 27/10/2021, dell'Autorità di Bacino Distrettuale dell'Appennino Centrale (A.U.B.A.C.), di aggiornamento del Piano Assetto Idrogeologico (P.A.I.) dei bacini di rilievo Regionale;
- Deliberazione di Giunta Regionale n. 1015 del 08/08/2022, recante "Art. 27, comma 3, delle Norme Tecniche di Attuazione (NTA) del Piano di Gestione Integrata delle Zone Costiere (Piano GIZC di cui alla DACR n. 104 del 6 dicembre 2019). DGR n. 452/2022 Approvazione modifiche e integrazioni non sostanziali al Piano GIZC.

Nel corso dell'indagine si è proceduto dapprima ad una ricerca storica di archivio, quindi al reperimento, degli studi pregressi e delle cartografie esistenti utili allo scopo del presente lavoro. Sono stati reperiti i seguenti studi:

- studi sul sistema geologico, geomorfologico ed idrogeologico per la redazione del Piano Regolatore Generale (P.R.G.) in adeguamento al Piano Paesaggistico Ambientale Regionale (P.P.A.R.) del comune di Fermo (FM), messi a disposizione dall'Amministrazione Comunale;

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE									
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).								
02									
01									
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice				
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO				

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

- studi sulla Microzonazione Sismica di livello II del territorio comunale di Fermo (FM), messi a disposizione dall'Amministrazione comunale;
- studi sul Rilievo Critico del Reticolo Idrografico Minore (R.I.M.), ai sensi della D.G.R. n. 3224 del 13/12/1999, messi a disposizione dall'Autorità di Bacino della Regione Marche; Sono state inoltre reperite le seguenti cartografie:
- Carta Topografica Regionale in scala 1:25.000, foglio 125 "Fermo", quadranti I e II;
- Carta tecnica Regionale (C.T.R.) in scala 1:10.000, sezioni 315020 "Porto San Giorgio" e 315060 "Altidona";
- Rilievo aerofotogrammetrico a curve di livello del territorio comunale DI Fermo (FM) in scala 1:5.000, messe a disposizione dall'ufficio di piano dell'Amministrazione comunale;
- Carta Geologica Regionale (CARG) in scala 1:10.000, sezioni 315020 "Porto San Giorgio" e 315060 "Altidona";
- Carta Geomorfologica con elementi antropici in scala 1:10.000, allegata agli studi sul Rilievo
 Critico del Reticolo Idrografico Minore (R.I.M.), area AP07;
- Carta del rischio idrogeologico del Piano Stralcio di Assetto Idrogeologico dei bacini di rilievo regionale (P.A.I.) in scala 1:10.000, tavole RI60a e RI60b;
- Planimetrie catastali del territorio comunale DI Fermo (AP) in scala 1:2.000;

Successivamente sull'area è stato eseguito un rilevamento geologico-geomorfologico di dettaglio, al fine di risalire alle caratteristiche litologiche del territorio ed individuare i processi morfogenetici che lo interessano, studio che si è ritenuto utile estendere ad un intorno significativo. In particolare l'analisi geomorfologia di dettaglio, espletata attraverso l'osservazione delle forme e degli eventuali depositi ad esse connessi, ha permesso di ricostruire il quadro morfogenetico dell'area in esame e di formulare delle ragionevoli previsioni sulle tendenze evolutive future in relazione, sia alle caratteristiche litostratigrafiche che alla dinamica geomorfologia.

La campagna delle indagini geotecniche in sito e geofisiche è stata condotta mediante l'esecuzione di:

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE									
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).								
02									
01									
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice				
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO				

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

- n. 8 prove penetrometriche dinamiche superpesanti D.P.S.H., portate fino al rifiuto strumentale (Allegato 11);
- n. 4 prove con tecnica multicanale M.A.S.W. (Allegato 12);
- n. 4 letture passive di microtremore ambientale H.V.S.R. (Allegato 12).

La base cartografica utilizzata per la stesura della cartografia tematica è il rilievo aereofotogrammetrico, in scala 1:2.000, del territorio comunale.

UBICAZIONE TOPOGRAFICA E COORDINATE GEOGRAFICHE

L'area oggetto del presente studio, individuata dal Piano Particolareggiato "PP8", è perimetrata all'interno della localitàMarina Palmense nel Comune di Fermo (FM).

L'area è inquadrata topograficamente nel Foglio 125 "Fermo", in scala 1:100.000 e nel Quadrante 125 II in scala 1:25.000 della Carta Topografica Regionale (REGIONE MARCHE, base I.G.M.) (Allegato 1).

Le coordinate geografiche dell'area in oggetto, identificate in un punto mediano rappresentativo, sono (Allegato 3):

SISTEMA DI RIFERIMENTO	LATITUDINE NORD (°)	LONGITUDINE EST (°)		
WGS84	43,146286	13,812699		
ED 50	43,147237	13,813614		

Tabella 1: Coordinate geografiche del sito.

INQUADRAMENTO GEOLOGICO

ASSETTO GEOLOGICO-STRUTTURALE

Il territorio comunale di Fermo si trova nella porzione più orientale del Bacino Marchigiano Esterno. Questi è costituito da una successione terrigena a dominante pelitica, all'interno della quale si rinvengono intercalati, a varie altezze stratigrafiche, corpi clastici sabbioso-argillosi e argilloso-sabbiosi. Tali sedimenti si sono deposti in un intervallo di tempo compreso tra la parte alta del Pliocene medio e il Pleistocene superiore. Il ciclo si chiude con la deposizione di sedimenti sabbiosi e ghiaiosi di ambiente marino marginale continentale (Formazione di Fermo), che affiorano nella parte alta del colle Fermano (Allegato 4) e al tetto di alcuni rilievi collinari vicini (Capodarco, Torre di Palme, Lapedona, Monterubbiano, ecc.).

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE									
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).								
02									
01									
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice				
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO				

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

In generale mentre la successione pliocenica è abbastanza monotona ed è costituita prevalentemente da sedimenti pelitici, quella pleistocenica (nel territorio di Fermo affiora solo il Pleistocene; il limite plio-pleistocene passa dietro gli abitati di Monte Giberto e Petritoli) è stata suddivisa in cinque unità informali, le quali rappresentano in senso stratigrafico dinamico cicli trasgressivo-regressivi, costituiti da un membro basale pelitico e da un soprastante membro a tessitura più grossolana che può essere, a seconda dei casi, pelitico-arenaceo, arenaceo-pelitico, puramente arenaceo o arenaceo-conglomeratico. I membri a tessitura grossolana rappresentano la registrazione sedimentaria dell'abbassamento del livello marino (depositi di spiaggia e/o di transizione alla spiaggia), mentre la deposizione delle peliti indicano un approfondimento del bacino sedimentario (fase trasgressiva). Verso la fine del Pleistocene inferiore si è prodotta una rapida accentuazione del sollevamento regionale determinando l'assetto "Monoclinale" dei depositi plio-pleistocenici periadriatici.

La deposizione pelitica pleistocenica avveniva con una giacitura *onlap2* sul fianco occidentale sepolto dell'anticlinale di Monte Capodarco, una prosecuzione verso sud dell'omologa struttura del Conero. Il Conero nel Pleistocene costituiva un'isola prospiciente la costa, similmente a quello che si verifica oggigiorno più a sud con le isole Tremiti, mentre l'area Fermana dell'anticlinale era una zona di "alto strutturale" dove la sedimentazione Pleistocenica è quasi assente e discordante sul Pliocene.

Nell'area non sono state rilevate faglie attive e capaci, ma solamente faglie inattive. La Tettonica ha fortemente condizionato sia l'assetto strutturale degli strati, disposti come già detto a "Monoclinale" dolcemente immergente verso est-nord-est, sia la conformazione delle principali valli fluviali, impostate su faglie "anti-appenniniche" ovvero con andamento est-ovest. Nel Pleistocene superiore-Olocene si sono formate le ampie coltri colluviali che con differenti spessori, si dispongono sui pendii. La loro tessitura è prevalentemente limosa. Esse sono spesso sede di fenomeni gravitativi.

Sul fondovalle dei principali corsi d'acqua sono presenti depositi alluvionali (attuali, recenti e terrazzati – olocene-pleistocene sup.), costituiti prevalentemente da ghiaie, ghiaie sabbioso-

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE								
Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).								
02								
01								
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalan	nessa Felice		
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO			

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

limose con intercalati lenti o livelli discontinui di limi argillosi, limi sabbiosi e sabbie; al tetto del deposito sono prevalenti i sedimenti a granulometria fine limoso-sabbiosi.

ASSETTO GEOMORFOLOGICO

Il territorio comunale si estende tra i bacini del fiume Tenna a nord e del fiume Ete Vivo a sud, dando origine ad una serie di strutture allungate secondo una direzione est-ovest. La massima altitudine si ha in corrispondenza del piazzale del Girfalco (colle Sabulo), situato alla sommità del centro abitato storico di Fermo, che raggiunge la quota di 319 m s.l.m.

In generale la morfologia dei luoghi è condizionata dall'evoluzione tettonica e dai processi d'erosione selettiva. L'aspetto d'insieme è tipico della fascia costiera marchigiana, caratterizzata da elevati rilievi collinari delimitati da versanti ad acclività medio-alta; alla sommità dei rilievi sono presenti ovunque dei ripiani debolmente degradanti verso il mare, su cui insistono gli antichi nuclei abitati.

A sud-est la frazione di Torre di Palme è delimitata verso mare da una falesia costiera, la cui origine è legata alle fasi finali del sollevamento generale dell'area adriatica (fine Pleistocene).

I processi di erosione selettiva hanno contribuito a modellare il paesaggio, mettendo in risalto i corpi arenaceo-conglomeratici più competenti dei sedimenti argillosi che costituiscono grana parte della successione sedimentaria affiorante.

La presenza di abbondanti depositi della copertura sui versanti, unitamente all'acclività di quest'ultimi, è la causa dei diffusi fenomeni franosi che interessano larga parte del territorio. Le loro caratteristiche sono varie. Vi è rappresentata l'intera gamma dei processi noti su pendii costituiti da sedimenti terrigeni a prevalenza argillosa. Si va dai soliflussi alle deformazioni plastiche alle vere e proprie frane. I soliflussi sono generalmente poco profondi e ad essi è associata una pericolosità medio-bassa; tuttavia essi spesso costituiscono il "grimaldello" d'ingresso a possibili fenomeni più importanti (frane) laddove l'incuria dell'uomo peggiora le condizioni ambientali (disboscamento diffuso, periodiche lavorazioni agrarie profonde, mancata regimazione delle acque superficiali, scavi e sbancamenti scriteriati, ecc.). Le deformazioni plastiche sono molto diffuse e sono riconoscibili per le ampie ondulazioni trasversali al pendio

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE									
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).								
02									
01									
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantal	amessa Felice			
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO				

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

che producono. A questi fenomeni è generalmente associato un grado di pericolosità medio. In ultimo le frane. Queste rappresentano un fenomeno di grande attenzione per il pericolo sociale ad esse connesso. Nel territorio di Fermo risultano assai diffuse le frane per colamento, che interessano nella quasi generalità dei casi le coltri di copertura a tessitura prevalentemente limosa. Le frane per scorrimento sono più rare, o perlomeno esse evolvono quasi sempre in frane complesse perché associate anche a fenomeni di colamento.

I restanti fenomeni sono stati classificati come quiescenti. Va sottolineato che nella maggioranza dei casi trattasi di fenomeni molto lenti. Le colate rapide, che si manifestano nel periodo invernale lungo i versanti in condizioni più critiche, sono spesso fenomeni abbastanza circoscritti, ancorché dannosi per la circolazione viaria e per il costante e progressivo consumo di suolo.

I processi erosivi sui versanti argillosi sono spesso molto diffusi e talora associati a fenomeni franosi.

In quanto alle scarpate strutturali se ne rinvengono alcune in corrispondenza dei corpi più competenti, che a Fermo si rinvengono al tetto della regressione (Fermo centro storico viale Vittorio Veneto, abitato di Torre di Palme).

I processi di erosione selettiva hanno dato origine a scarpate subverticali nei terreni arenaceoconglomeratici, in netto risalto rispetto ai sedimenti alle porzioni di pendio impostate sulle argille (più tenere).

ASSETTO IDROGEOLOGICO

La gran parte del territorio comunale è costituita da sedimenti argillosi dotati di permeabilità molto bassa e che non consentono l'instaurarsi di una circolazione idrica sotterranea. Tuttavia, le argille, laddove le condizioni lo consentono, costituiscono un buon *acquiclude* per la formazione di modesti acquiferi di collina.

In corrispondenza degli impluvi e talora sui pendii che ospitano spesse coltri colluviali a tessitura prevalentemente limosa, sono presenti falde acquifere molto modeste e a carattere fortemente stagionale.

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE								
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).							
02								
01								
00	00 Prima emissione 21/05/2024 Cantalamessa Felice Cantalamessa Felice Cantalamessa Felice							
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO			

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

Più interessanti le falde acquifere delle piane dei fiumi Tenna ed Ete vivo, entrambe sedi di una circolazione idrica degna d'interesse. L'acquifero di subalveo del fiume Tenna, in particolare, è composto da ghiaie e sabbie permeabili e con un discreto spessore; pertanto rappresenta un'importante risorsa idrica.

Sia i depositi alluvionali del fiume Tenna, sia quelli dell'Ete vivo, si raccordano ai depositi costieri presenti sulla porzione est del territorio, prospiciente il mare Adriatico. Anche I depositi costieri sono sede di una circolazione idrica mediamente importante, che avvicinandoci alla linea di costa, è in equilibrio con il cuneo di acqua marina salata sottostante.

L'area di Marina Palmense oggetto d'indagine, si colloca nella parte costiera ed è caratterizzata da una storia geologica molto recente strettamente legata all'intensa attività tettonica pliopleistocenica ed alla complessa storia delle glaciazioni quaternarie.

Il trend sedimentologico rivela un substrato pelitico di depositi epibatiali di età pliopleistonenica; queste condizioni di sedimentazione marina sono la conseguenza della tettonica distensiva e del conseguente collassamento dell'area orientale della regione marchigiana.

Questi orizzonti pelitici si rinvengono, per lo più, lungo i versanti e sul fondovalle dove l'azione erosiva sia marina che fluviale li ha portati in affioramento.

Nella parte sommitale delle alture collinari della zona in studio, questi depositi risultano sovrastati da sabbie e conglomerati di tetto di età pleistocenica ricordo di antiche linee di spiaggia relitte e, in alcune fasce di territorio, da corpi pelitico-arenacei e arenaceo-pelitici.

La fine della trasgressione versiliana ha permesso l'instaurarsi dell'attuale sistema di sedimentazione, che caratterizza la recente piana costiera nella quale il substrato è coperto da uno spessore rilevante di depositi di litorale fluviali ridepositati, in modo selettivo, dall'azione delle correnti marine.

L'area investigata non è caratterizzata dalla presenza di macro-discontinuità tettoniche che dislocano la locale successione stratigrafica del sottosuolo e le dislocazioni minori non mostrano evidenze di attività recentissima e, pertanto, la nostra area non ha evidenze sismogenetiche intrinseche rilevanti.

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE								
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).							
02								
01								
00	00 Prima emissione 21/05/2024 Cantalamessa Felice Cantalamessa Felice Cantalamessa Felice							
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO			

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

Le unità litostratigrafiche riconosciute e presenti nell'area sono pertanto riferibili dall'alto verso il basso a sedimenti continentali di origine colluviale e alluvionali, soprastanti i depositi da neritici ad epibatiali di rilevante potenza.

Si propone la caratterizzazione generale e schematica del sottosuolo attraverso la definizione dei rapporti stratigrafici esistenti tra i vari litotipi presenti in sito (dal basso verso l'alto), desunta da sondaggi reperiti in zona limitrofa.

• Formazione Pelitica (Pleistocene Superiore p.p.).

Rappresenta il litotipo dominante nella successione ed è costituito da depositi da neritici ad epibatiali, ascrivibili ad argille limose di colore grigio-azzurro, stratificate ed a luoghi sottilmente laminate, sovraconsolidate. All'interno della formazione si rinvengono talora sottilissime spalmature di sabbie fini grigiastre. Lo spessore dell'unità non è stato determinato al termine della presente indagine.

• Depositi alluvionali di spiaggia (Pleistocene Superiore/Olocene).

Sono rappresentati nell'ambito dell'area esplorata da un materasso alluvionale di natura eterogenea a principale componente mista e tessitura granulare medio-grossolana (sabbie e ghiaie) e secondariamente fine e finissima (sabbie, limi e argille). Lo spessore complessivo delle alluvioni nell'area si aggira attorno ai 16,00-18,00 ml.

GEOMORFOLOGIA

Lo scenario litoraneo dominante, il quale costituisce una delle zone di transizione tra terraferma e mare, rappresenta, in effetti, il resoconto del bilancio sedimentario scaturito dagli apporti fluvio-torrentizi e l'elaborazione selettiva, del materiale alluvionale, operata dal moto ondoso e dalle correnti sottocosta.

La storia geologica del litorale, nel tratto interessato dallo studio, trova origine dalla combinazione del periodo delle ultime glaciazioni, in cui il mare, in fase di ritiro, abbassava il proprio livello di 100-120 mt da quello attuale, aumentando il potere erosivo dei fiumi, e gli apporti di sedime granulare di foce dalle principali aste fluviali. Successivamente la

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE								
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).							
02								
01								
00	00 Prima emissione 21/05/2024 Cantalamessa Felice Cantalamessa Felice Cantalamessa Felice							
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	\	/ALIDATO		

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

trasgressione marina, in seguito allo scioglimento dei ghiacciai, ha ridistribuito la sabbia precedentemente depositata dando origine ad una copertura di sabbia relitta.

La striscia di territorio in parola mostra i caratteri tipici di una costa bassa ghiaioso-sabbiosa, costruita, in parte, dal trasporto solido trasferito a valle dal fiume Ete Vivo; a questo primo stadio sedimentologico è anche intervenuta l'azione dinamica del mare che ha ripreso e rielaborato i materiali alluvionali di sosta.

La zona litoranea, nei tratti osservati, risulta legata ad una morfologia piatta ed estesa che si arresta bruscamente, verso monte, a circa 600 metri dalla linea di riva, in corrispondenza del piede delle pendici collinari che terminano a monte con le zone di crinale; queste, nell' area esaminata, si riferiscono a cimose ghiaioso-sabbiose, a breve sviluppo planimetrico, messe in posto dal mare in fase di regressione (Monte dei Caccioni e Torre di Palme).

Questa linea di sutura, che rappresenta il passaggio dal tavolato alluvionale ad i tratti in declivio morbidi dei versanti, apre la visione ad uno scenario panoramico, verso monte, definito da un significativo risalto morfologico.

IDROLOGIA E IDROGRAFIA SUPERFICIALE

I complessi dei depositi di origine alluvionale recenti, distribuiti nell'area di progetto, sono costituiti essenzialmente da corpi ghiaiosi e subordinatamente sabbioso-ghiaiosi con intercalazioni di lenti, di varia estensione e spessore, limo-argillose e limo-sabbiose.

In tali acquiferi sono presenti falde prevalentemente monostrato a superficie libera di notevole importanza, e più raramente, soprattutto in prossimità della costa, falde multistrato, confinate o semi-confinate.

L'alimentazione principale si esplica mediante apporti provenienti da monte, esistendo un circuito aperto (contatto idraulico) tra le pendici collinari e il materasso alluvionale costiero, e, in misura meno rilevante vista l'intensa urbanizzazione, dagli apporti meteorici diretti sulla pianura stessa.

Questi corpi alluvionali di copertura, in particolare modo gli orizzonti di ghiaia e sabbia, presentano conducibilità idrauliche e trasmissività medio alte con un'infiltrazione totale

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE								
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).							
02								
01								
00	00 Prima emissione 21/05/2024 Cantalamessa Felice Cantalamessa Felice Cantalamessa Felice							
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	,	/ALIDATO		

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

maggiore del ruscellamento; tali acquiferi sono sostenuti dal substrato pelitico pliopleistocenico che funge da *acquiclude* dell'intero complesso alluvionale.

Il fosso della Torre a sud rappresenta il principale canale di deflusso naturale delle acque superficiali. L'asta idrografica del fosso che sfocia direttamente a mare, assume un andamento prevalentemente anti-appenninico. Si riconoscono diversi fossi senza denominazione che sfociare direttamente a mare i quali tagliano trasversalmente l'area di versante. I corsi d'acqua permettono il deflusso delle acque bianche provenienti dalle sedi stradali poste ad ovest e delle acque di scolo del versante costiero.

ANALISI DELLA PERICOLOSITA' GEOLOGICA

L'area di Marina Palmense e del Piano Particolareggiato "PP8" oggetto di variante, in virtù della tavola RI 60/b del "Piano Stralcio di bacino per l'Assetto Idrogeologico PAI" dei bacini di rilievo regionale delle Marche (Aggiornato al D.S. AUBAC n. 140 del 27.10.2021), è interessata, nella sua porzione a E-SE, da una perimetrazione di area a rischio idrogeologico per esondazione, identificata con codice E-24-0001, caratterizzata da grado di rischio molto elevato R4 (Allegato 6). Le N.T.A. del P.A.I. dei Bacini della Regione Marche a tal proposito:

Articolo 13 Coordinamento con la pianificazione urbanistica

- 1. In sede di formazione degli strumenti urbanistici generali o di loro varianti non sono di norma consentite nuove previsioni insediative nelle aree a pericolosità moderata (AVD_P1) e media (AVD_P2); l'eventuale inserimento è condizionato all'esito positivo di una verifica di compatibilità idrogeologica, da effettuarsi prima dell'adozione dello strumento urbanistico.
- 2. La verifica di compatibilità idrogeologica consiste nella valutazione della congruenza della specifica previsione urbanistica, in rapporto al livello di pericolosità riscontrato; tale verifica dovrà risultare a seguito di studio geologico di dettaglio, conforme alla normativa vigente ed esteso ad un intorno significativo del versante, redatto secondo il D.M.LL.PP. 11 marzo 1988 e coerente con le finalità ed i contenuti delle "Indagini geognostiche preliminari" di cui alla Circolare della Regione Marche n. 14 del 28 Agosto 1990, nonché delle "Indagini sulla pericolosità sismica locale" di cui all'Art.7 della Circolare della Regione Marche n. 15 del 28 Agosto 1990 (BUR n. 120 del 24 novembre 1990) come modificate ed integrate dalla Deliberazione della G.R. n. 1287 del 19 Maggio 1997 (supplemento n. 20 al BUR n. 32 del 29 maggio 1997) e dei relativi atti di recepimento.
- 3. I Comuni allegano all'atto di adozione di strumenti urbanistici generali o relative varianti la verifica di compatibilità idrogeologica redatta in conformità alle disposizioni del presente articolo.
- 4. La Provincia, in sede di espressione del parere ex art.13 della legge 2 febbraio 1974, n. 64, si esprime in via definitiva anche sulla compatibilità della previsione urbanistica di cui al comma 1, eventualmente subordinandola a prescrizioni da riportarsi nelle norme di attuazione del PRG e da recepire eventualmente nello strumento attuativo.
- 5. All'atto dell'approvazione degli strumenti urbanistici e delle loro varianti di cui al comma 1, le delimitazioni delle aree in dissesto e le previsioni urbanistiche ivi comprese, conseguenti alla verifica di compatibilità di cui al presente articolo, integrano le delimitazioni e le prescrizioni del presente Piano.
- 6. A tal fine l'Ente competente alla approvazione degli strumenti urbanistici di cui al comma 1 trasmette all'Autorità di bacino le risultanze della verifica di compatibilità di cui ai precedenti commi comprensiva delle eventuali modifiche apportate alle perimetrazioni delle aree in dissesto e alle relative previsioni urbanistiche.
- 7. L'Autorità di bacino provvede, ai sensi dell'Articolo 5, comma 4, alla modifica degli elaborati di piano, entro il termine di tre mesi dalla avvenuta trasmissione delle risultanze della verifica di compatibilità.
- 8. I Comuni segnalano tempestivamente le riattivazioni dei fenomeni franosi nonché l'attivazione di nuovi fenomeni o l'aggiornamento di quelli già perimetrati.

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE								
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).							
02								
01								
00	00 Prima emissione 21/05/2024 Cantalamessa Felice Cantalamessa Felice Cantalamessa Felice							
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	\	/ALIDATO		

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

Sono stati inoltre analizzati gli elaborati del Piano di Gestione Integrata delle Zone Costiere (G.I.Z.C.), nella versione aggiornata con D.G.R.M. n 1015 del 08/08/2022, ed in particolare ci si è soffermati su quanto la Regione Marche ha fatto nel piano per l'attuazione della Direttiva 2007/60/UE-Direttiva Alluvioni.

L'Attuazione della direttiva europea 2007/60/CE, relativa alla gestione dei rischi di alluvioni, recepita con il D.lgs. n. 49 del 23 febbraio 2010, impone una diversa trattazione del rischio cui il territorio, compreso quello costiero, è assoggettato. Tale attuazione ha imposto la perimetrazione delle aree soggette ad inondazioni marine intese come eventi in grado di determinare perdita più o meno definitiva di valore dei beni fisici e delle stesse persone presenti nell'area eventualmente colpita da fenomeni caratterizzati da diversi tempi di ritorno. Il Piano G.I.Z.C. ha recepito tali norme e contiene i perimetri di pericolosità, secondo tre tempi di ritorno, rappresenti negli elaborati cartografici "c) "Programmazione degli interventi" (Allegato 8).

In particolare, una porzione dell'area del "PP8 Marina Palmense", è interessata dalla perimetrazione di un'area con "scarsa probabilità di alluvioni o scenari di eventi estremi" con tempi di ritorno Tr>100 anni così definita: "zona Tr > 100 (Scarsa probabilità di alluvioni o scenari di eventi estremi). Per il tempo di ritorno con "scarsa probabilità di alluvioni o scenari di eventi estremi", non definito numericamente dalla norma, non si ritiene possibile elaborare statistiche attendibili stante la ridotta serie temporale dei dati disponibili. Pertanto i redattori del piano hanno scelto di far riferimento a specifici eventi estremi già avvenuti e procedere al completamento della banca dati degli stessi eventi estremi, utile anche all' alimentazione della piattaforma FloodCat (D.Lgs. 49/2010). E' stato quindi effettuato un primo censimento di testimonianze di vario tipo (video/stampa) reperibili in rete e sulla rassegna stampa regionale. Da tale analisi e da alcune misurazioni di quote topografiche significative appare evidente che la quota di 2,45 m s.l.m.m. è stata superata dagli eventi descritti raffigurando un tempo di ritorno superiore ai 100 anni. Le N.T.A. del piano G.I.Z.C. prevedono:

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE								
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).							
02								
01								
00	00 Prima emissione 21/05/2024 Cantalamessa Felice Cantalamessa Felice Cantalamessa Felice							
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO			

Geologo specialista n. 873 — Albo Sezione A, Ordine dei Geologi delle Marche Via Umberto Giordano n. 5 - 63100 ASCOLI PICENO (AP) - Telefax 0736.254679 MOBILE 349/2728161 - E-Mail: Felice.cantalamessa@gmail.com P. IVA 02359090442 PEC: Felice.cantalamessa@pec.it - C.F.: CNTFLC74R05A462B

Art. 22 - Disciplina della "fascia di rispetto" e delle aree Tr>100

- 1. All'interno della "fascia di rispetto" (di cui agli elaborati grafici delle parti C e D) così come definita all'art.3 delle presenti NTA, fatto salvo quanto previsto alle successive Tabelle 1 e 2 del presente articolo, sono consentiti gli interventi di cui all'art. 3, comma 1, lett.
- a), b), c), d), e), f) del DPR 380/2001 e ss.mm.ii, nonché le tettoie e i portici così come definiti all'art. 3, comma 9. Tali interventi, sia privati che pubblici o di pubblica utilità, possono essere effettuati: sugli edifici, sulle infrastrutture sia a rete che puntuali, sulle attrezzature esistenti e per l'abbattimento delle barriere architettoniche.
- 2. All'interno delle aree di cui alla DIRETTIVA 2007/60/CE si applicano le seguenti prescrizioni: a) nelle aree a pericolosità Tr 20 e Tr 100 gli interventi di cui al comma 1 possono comportare anche la modifica di destinazione d'uso ma senza aumento dell'esposizione così come definita dalla DGR n. 53/2014 e senza la realizzazione di volumi interrati e seminterrati, fermo restando la valutazione di vincoli esistenti più restrittivi;
- b) nelle aree a pericolosità Tr 20 e Tr 100, come già previsto per le aree demaniali, negli atti di approvazione di interventi di nuova costruzione di cui all'articolo 3, comma 1, lettera e) del DPR 380/2001 e ss.mm.ii. e negli atti conseguenti a questi, si dovrà prevedere l'obbligo di manlevare la pubblica amministrazione da ogni danno direttamente o indirettamente derivante dall'opera realizzata o arrecato alla stessa a causa di eventi meteomarini;
- c) nelle aree a Tr>100 e al di fuori del Tr 100, compete agli strumenti di pianificazione urbanistica e di protezione civile, la regolamentazione delle misure volte alla gestione del rischio;
- d) Nelle aree all'interno della "fascia di rispetto" è consentito alle strutture ricettive trasferire dai piani interrati e seminterrati al piano terra le quantità minime di aree destinate a parcheggio già previste dallo strumento urbanistico e dalla normativa vigente. Il comune può disporre, nel rispetto delle ulteriori discipline vigenti, la deroga
- dell'altezza dell'edificio prevista dagli strumenti urbanistici. 3. Sono altresì consentiti gli interventi non altrimenti localizzabili per reti e impianti tecnologici, ivi compresi i manufatti strettamente indispensabili a garantire la funzionalità dell'intervento.
- di difesa della costa esprime un parere obbligatorio e vincolante.
- 5. Sono esclusi dal parere obbligatorio e vincolante di cui al comma precedente, gli interventi di seguito descritti:
- a) manutenzione ordinaria (D.P.R. n. 380 del 06/06/2001, art. 3, comma 1, lett. a);
- b) manutenzione straordinaria (D.P.R. n. 380 del 06/06/2001, art. 3, comma 1, lett. b);
- c) restauro e di risanamento conservativo (D.P.R. n. 380 del 06/06/2001, art. 3, comma 1, lett. c) a condizione che non si incrementi l'esposizione così come definita dalla DGR n. 53/2014 e l'interferenza con l'equilibrio idrodinamico del litorale;
- d) sopraelevazione di edifici con conservazione della sagoma planimetrica esistentedel corpo di fabbrica;
- e) ampliamento di superficie utile contenuto all'interno dell'originario sedime dell'edificio esistente o riguardante livelli superiori al 1º fuori terra;
- f) installazione o modifica di insegne;
- g) installazione o modifica di piccole strutture leggere destinate a giochi per bambini da rimuovere al termine della stagione turistica-balneare.
- 6. La disciplina all'interno della "fascia di rispetto" è regolamentata dalle successive Tabelle 1 e 2.
- 7. Non sono soggetti a quanto previsto nelle Tab.1 e Tab. 2 gli interventi ricadenti nelle
- zone territoriali omogenee di tipo A, B e D di completamento rispondenti ai requisiti di cui all'art. 2, lett. A), B) e D) del DM n.1444/1968, anche se altrimenti denominate negli strumenti urbanistici, salvo quelle ricadenti all'interno del demanio marittimo.
- 8. Il presente articolo non si applica alle aree portuali di cui al Piano dei porti della Regione Marche vigente.
- 9. All'interno della fascia di rispetto, sono consentiti gli interventi di cui agli articoli 1 e 4, comma 7 della L.R. 22/2009 (Piano Casa); qualora gli stessi interventi ricadano all'interno delle aree a Tr 20 e Tr 100, la quota del piano di calpestio Qc del primo solaio non può essere inferiore a 1,80 metri s.l.m.m. e l'opera stessa non deve prevedere comunque attacchi a terra.

9bis. All'interno della fascia di rispetto è consentita la modifica della destinazione d'uso delle previsioni urbanistiche vigenti a condizione che la stessa non comporti un aumento della classe di esposizione come definita dalla DGR n.53/2014 e l'intervento sia di estensione inferiore a 1 ha

E' stata inoltre consultata la cartografia tematica del Rilievo Critico del Reticolo Idrografico Minore (R.I.M.), in particolare dell'area AP07 (Allegato 6), da cui si evince che l'area è attraversata da diversi fossi e rii con andamento anti-appenninico, che fungono da collettori, verso il mare Adriatico, delle acque di versante e di quelle raccolte dalle maggiori infrastrutture presenti in zona, l'Autostrada A14 e la S.S. n. 16 Adriatica. Alcuni si presentano intubati o con il reticolo obliterato.

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE								
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).							
02								
01								
00	00 Prima emissione 21/05/2024 Cantalamessa Felice Cantalamessa Felice Cantalamessa Felice							
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO			

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

A Sud, l'area di piano, è interessata dal fosso della Torre, maggiore collettore idrico dell'area, che scorre anch'esso ad andamento anti-appenninico lungo la piana costiera fino al mare Adriatico. Presenta problemi di officiosità idraulica in corrispondenza dell'attraversamento del rilevato ferroviario Bologna-Taranto, che posto in direzione circa N-S, funge anche da barriera al drenaggio delle acque verso Est e non permette il regolare deflusso a mare delle acque.

Dall'analisi geomorfologica di dettaglio si evince che l'area non è interessata da forme o processi geomorfologici attivi, pertanto risulta essere priva di specifiche criticità idrogeologiche.

PIANO DELLE INDAGINI

Al fine di ricostruire la situazione stratigrafica, sono stati reperiti n. 4 sondaggi geognostici a rotazione, effettuati all'interno dell'area del PP8 Marina Palmense (Allegato 10):

SONDAGGIO	CAROTAGGIO CONTINUO (m)	DISTRUZIONE DI NUCLEO (m)	NUMERO CAMPIONI INDISTURBATI	NUMERO CAMPIONI RIMANEGGIATI	NUMERO SPT	ATTREZZATURE ISTALATE
S12_MZS	7.00	0.00	1	1	-	ı
S132_MZS	4.00	0.00	-	-	-	-
S234_MZS	2.50	0.00	-	-	-	-
S239_MZS	3.00	0.00	-	-	-	-

Tabella 2: Caratteristiche dei sondaggi geognostici a rotazione e carotaggio continuo e distruzione reperiti.

La campagna delle indagini geotecniche in sito è consistita nella esecuzione di n. 8 prove penetrometriche dinamiche superpesanti D.P.S.H. (Allegato 11):

PROVA	PROFONDITA' (ml)	TIPOLOGIA
PDPSH_1	1.60	Deep Penetrometer Super Heavy
PDPSH_2	1.40	Deep Penetrometer Super Heavy
PDPSH_3	3.60	Deep Penetrometer Super Heavy
PDPSH_4	4.00	Deep Penetrometer Super Heavy
PDPSH_5	3.60	Deep Penetrometer Super Heavy
PDPSH_6	1.80	Deep Penetrometer Super Heavy
PDPSH_7	6.40	Deep Penetrometer Super Heavy
PDPSH_8	3.20	Deep Penetrometer Super Heavy

Tabella 3: Caratteristiche delle prove penetrometriche dinamiche D.P.S.H..

LITOLOGIA E STRATIGRAFIA

Dall'analisi dei dati, ricavati dalle indagini geognostiche e geotecniche reperite ed eseguite, è stato possibile ricostruire la situazione lito-stratigrafica locale. Le varie unità litotecniche

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE								
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).							
02								
01								
00	00 Prima emissione 21/05/2024 Cantalamessa Felice Cantalamessa Felice Cantalamessa Felice							
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO			

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

vengono distinte secondo la "guida per la definizione di unità litotecniche", allegata alla Circolare Regione Marche n°. 14, pubblicata sul B.U.R. Marche n°. 120 del 24/09/1990.

Sono state rinvenute le seguenti unità litologico-tecniche (Allegati 13 e 14):

UNITA' LITOLOGICO-TECNICHE DEL SUBSTRATO

F) Sedimenti a grana fine e finissima

UNITA' F1. Argille (successione Plio-Pleistocenica, genesi di ambiente marino)

L'unità si presenta con fitte alternanze di peliti grigio-azzurre laminate, disposte su una struttura monoclinalica immergente verso N-E. Appartengono allaFormazione delle Argille Azzurre in litofacies peliti laminate FAAf. Affiorano in gran parte del territorio comunale e rappresentano l'unità più antica del substrato plio-pleistocenico.

UNITA' LITOLOGICO-TECNICHE DELLA COPERTURA

E) Sedimenti a grana medio-fine

Materiali coesivi

UNITA' E2. Sabbie-limose e limi-sabbiosi (deposito detritico alluvionale - genesi ambiente continentale)

Litotipi costituiti da limi argilloso-sabbiosi, limi inorganici, sabbie fini limose o argillose e limi argillosi di bassa plasticità. Si rinvengono in corrispondenza della piana costiera, lungo l'asta del Fosso della Torre, che li ha messi in posto durante le varie fasi di sovralluvionamento dell'area.

D) Sedimenti a grana grossa

UNITA' D2. Ghiaie ciottolose in matrice sabbiosa (deposito detritico-colluviale – genesi ambiente continentale)

Materiali sciolti

Coltre detritica caotica, costituita da ghiaie e sabbie con frazione limosa, ghiaie limose e miscela di ghiaie, sabbie e limo. Si rinviene in corrispondenza del versante di retro-spiaggia fino alla piana costiera e provengono dal disfacimento subaereo subito dai litotipi del substrato, sabbie e ghiaie di tetto (affioranti in corrispondenza della sommità dei versanti e dei crinali.

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE								
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).							
02								
01								
00	00 Prima emissione 21/05/2024 Cantalamessa Felice Cantalamessa Felice Cantalamessa Felice							
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO			

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

D) Sedimenti a grana grossa

Materiali sciolti

UNITA' D1. Ghiaie-ciottolose (depositi detritico-alluvionale-ambiente di transizione continetalemarino).

Ghiaie-ciottolose eterometriche, ghiaie pulite con granulometria ben assortita. Si rinvengono in corrispondenza di tutta la piana costiera. Derivano dalla rielaborazione e risedimentazione marina degli apporti detriti provenienti da rii e fossi di materiali proveniente dal disfacimento dei termini grossolani dei depositi di tetto.

ANALISI DELL'ACCLIVITA'

Dall'analisi della cartografia di base, consistente in un rilievo aereo-fotogrammetrico a curve di livello in scala 1:2.000 è stato possibile redigere, per ogni area indagata, una carta clivometrica (Allegato 16). Sono state individuate e cartografate n. 2 classi di acclività:

- Grado di acclività basso (p < 10%), alle arre della piana alluvionale costiera.
- Grado di acclività medio (10% versante costiero.

Tali classi, unitamente alle altre analisi, contribuiranno ad esprimere un giudizio tecnico sulla vocazionalità dell'area ai fini previsti dalla variante.

SISMICA ED ANALISI DELLA PERICOLOSITA' SISMICA LOCALE

In base alla D.G.R. n. 1142 del 19 settembre 2022 recante "Aggiornamento dell'elenco delle zone sismiche della Regione Marche", il territorio comunale di Fermo (FM) è stato ri-classificato come appartenente alla ZONA 2.

Ai sensi del D.M. 17/01/2018 le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione e sono funzione delle caratteristiche morfologiche e stratigrafiche che determinano la risposta sismica locale. La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa ag in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A come definita al § 3.2.2 del D.M.

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE								
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).							
02								
01								
00	00 Prima emissione 21/05/2024 Cantalamessa Felice Cantalamessa Felice Cantalamessa Felice							
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO			

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

17/01/2018), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente $S_e(T)$, con riferimento a prefissate probabilità di eccedenza PVR come definite nel § 3.2.1, nel periodo di riferimento VR, come definito nel § 2.4. In alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla pericolosità sismica locale dell'area della costruzione. Ai fini della normativa vigente le forme spettrali sono definite, per ciascuna delle probabilità di superamento PVR nel periodo di riferimento VR, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- Ag accelerazione orizzontale massima al sito;
- F0 valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_c* valore di riferimento per la determinazione del periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

Per i valori di ag, Fo e T_c* necessari per la determinazione delle azioni sismiche, si fa riferimento agli Allegati A e B al Decreto del Ministro delle Infrastrutture 14 gennaio 2008, pubblicato nel S.O. alla Gazzetta Ufficiale del 4 febbraio 2008, n.29, e successivi aggiornamenti. Ai fini della definizione dell'azione sismica di progetto, l'effetto della risposta sismica locale si valuta mediante specifiche analisi, da eseguire con le modalità indicate nel § 7.11.3. In alternativa, qualora le condizioni stratigrafiche e le proprietà dei terreni siano chiaramente riconducibili alle categorie definite nella Tab. 3.2.II, si può fare riferimento a un "approccio semplificato" che si basa sulla classificazione del sottosuolo in funzione dei valori della velocità di propagazione delle onde di taglio Vs.

I valori dei parametri meccanici necessari per le analisi di risposta sismica locale o delle velocità V_S per l'approccio semplificato costituiscono parte integrante della caratterizzazione geotecnica dei terreni compresi nel volume significativo, di cui al § 6.2.2. del D.M. 17/01/2008. I valori di V_S sono ottenuti mediante specifiche prove oppure, con giustificata motivazione e limitatamente all'approccio semplificato, sono valutati tramite relazioni empiriche di comprovata affidabilità con i risultati di altre prove in sito, quali ad esempio le prove penetrometriche dinamiche per i terreni a grana grossa e le prove penetrometriche statiche. La

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE								
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).							
02								
01								
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantal	amessa Felice		
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	\	/ALIDATO		

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, V_{Seq} (in m/s), definita dall'espressione:

$$V_{Seq} = H/\sum_{i=1}^{N} hi/V_{Si}$$

hi spessore dell'i-esimo strato;

V_{Si} velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da VS non inferiore a 800 m/s.

Per le fondazioni superficiali, la profondità del substrato è riferita al piano di imposta delle stesse, mentre per le fondazioni su pali è riferita alla testa dei pali. Nel caso di opere di sostegno di terreni naturali, la profondità è riferita alla testa dell'opera.

Per muri di sostegno di terrapieni, la profondità è riferita al piano di imposta della fondazione. Per depositi con profondità H del substrato superiore a 30 m, la velocità equivalente delle onde di taglio V_{Seq} è definita dal parametro V_{S30} , ottenuto ponendo H=30 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

Le "categorie di sottosuolo" per l'utilizzo dell'approccio semplificato sono definite in Tab. 3.2.II.

Α	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s,
'	eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un
В	miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800
	m/s.
	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del
С	substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di
	velocità equivalente compresi tra 180 m/s e 360 m/s.
	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del
D	substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di
	velocità equivalente compresi tra 100 e 180 m/s.
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità
	del substrato non superiore a 30 m

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE								
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).							
02								
01								
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Canta	amessa Felice		
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	'	/ALIDATO		

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

Per queste cinque categorie di sottosuolo, le azioni sismiche sono definibili come descritto al § 3.2.3 del DM 17/01/2018. Per qualsiasi condizione di sottosuolo non classificabile nelle categorie precedenti, è necessario predisporre specifiche analisi di risposta locale per la definizione delle azioni sismiche. Al fine di definire il modello sismo-stratigrafico di sito sono state eseguite le seguenti indagini (Allegato 12):

LINEA	LUNGHEZZA (ml)	RICEVITORI (n°)	DISTANZA GEOFONI (ml)	Vs ₃₀ (m/s)	TIPOLOGIA
MASW_1	44.0	12	4.0	331.1	Multichannel Analisys Surface Waves
MASW_2	44.0	12	4.0	319.5	Multichannel Analisys Surface Waves
MASW_3	44.0	12	4.0	329.2	Multichannel Analisys Surface Waves
MASW_4	44.0	12	4.0	331.1	Multichannel Analisys Surface Waves

Tabella 4: Elenco e caratteristiche delle linee sismiche con tecnica multicanale M.A.S.W...

Dalle indagini geofisiche eseguite per il sito oggetto di studio con la tecnica M.A.S.W., il suolo, utilizzando un approccio semplificato delle NTC 2018 (D.M. 17/01/2018), può essere definito di Categoria "C".

Per condizioni topografiche complesse è necessario predisporre specifiche analisi di risposta sismica locale. Per configurazioni superficiali semplici si può adottare la seguente classificazione (Tab. 3.2.III del DM 17/01/2018):

Categoria	Caratteristiche della superficie topografica				
T1	T1 Superficie pianeggiante, pendii e rilievi isolati con inclinazione media ≤15°				
T2	Pendii con inclinazione media >15°				
Т3	Rilievi con larghezza in cresta molto minore della base e inclinazione media 15°≤i≤30°				
T4	Rilievi con larghezza in cresta molto minore della base e inclinazione media i >30°				

Le suesposte categorie topografiche si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30 m..

Per tener conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica locale, si utilizzano i valori del coefficiente topografico ST riportati nella Tab. 3.2.V del D.M. 17/01/2018, in funzione delle categorie topografiche definite nel § 3.2.2 e dell'ubicazione dell'opera o dell'intervento.

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE							
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).						
02							
01							
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice		
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO		

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

Categoria Topografica	Ubicazione dell'opera o dell'intervento	
T1	T1 -	
T2	T2 In corrispondenza della sommità del pendio	
ТЗ	T3 In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1.4

La variazione spaziale del coefficiente di amplificazione topografica è definita da un decremento lineare con l'altezza del pendio o del rilievo, dalla sommità o dalla cresta, dove ST assume il valore massimo riportato nella Tab. 3.2.V, fino alla base, dove ST assume valore unitario. La località di Marina Palmense e nello specifico l'area individuata dal piano particolareggiato PP8 si colloca in corrispondenza di aree pianeggianti, pertanto il coefficiente di amplificazione topografica ST può essere valutato pari a 1.0 (T1).

	cu	ag [g]	Fo	Tc* [s]	Ss	Сс	St	s		TB [s]	TC [s]	TD [s]
SLO	1	0,048	2,418	0,277	1,500	1,600	1,000	1,500	1,000		0,444	1,790
SLD	1	0,060	2,477	0,291	1,500	1,580	1,000	1,500	1,000	0,153	0,460	1,842
SLV	1	0,181	2,463	0,304	1,430	1,560	1,000	1,430	1,000	0,158	0,474	2,323
SLC	1	0,236	2,513	0,318	1,340	1,530	1,000	1,340	1,000	0,162	0,487	2,543

Tabella 5: Parametri degli spettri in accelerazione delle componenti orizzontali dell'approccio semplificato delle NTC 2018 (C-T1).

Ai fini della misura diretta della frequenza caratteristica di sito nello studio del fenomeno di doppia risonanza, sono state effettuate n. 4 misure passive di microtremore ambientale H.V.S.R. (Allegato 11), che hanno dato i seguenti risultati:

DENOMINAZIONE	F ₀ (Hz)	A_0
HVSR_1	0.65±0.33	<2.0
HVSR_2	14.75±0.11	<2.0
HVSR_3	13.70±0.13	<2.0
HVSR_4	14.75±0.11	<2.0

Tabella 6: Lettura dei microtremori ambientali H.V.S.R..

Dalle risultanze dello studio sulla Microzonazione Sismica di livello II, ed in particolare dalla carta delle Microzone Omogenee in Prospettiva Sismica (M.O.P.S.) (Allegato 8), l'area individuata dal "PP8" è interessata dai seguenti litotipi:

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE								
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).							
02								
01								
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice			
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO			

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

UNITA' DELLA COPERTURA

Ambiente fluvio-lacustre - depositi alluvionali terrazzati, attuali e recenti

- MLca – Limi inorganici, sabbie fini limose. Tale litotipo e costituito principalmente da sedimenti limo-sabbiosi e da sabbie limose. Si rinvengono sotto l'abitato di Torre di Palme all'uscita della valle del Fosso della Torre[Olocene].

Ambiente costiero - depositi di spiaggia:

- Gwtm - Ghiaie pulite con granulometria ben assortita, miscela di ghiaia e sabbia. Si rinvengono nella piana costiera antistante la falesia di Torre di Palme. Essi rappresentano il frutto dello smantellamento dei depositi di tetto, e loro rielaborazione in ambiente marino costiero.

UNITÀ DEL SUBSTRATO

- ALS (Alternanza di litotipi stratificati) - depositi marini appartenenti alla Formazione delle Argille Azzurre, in litofacies pelitico e pelitico-arenacea con assetto giaciturale leggermente immergente (5-10°) verso E/N-E. Sono stati raggruppati nell'unita del substrato ALS poichè presentano caratteristiche geomeccaniche e sismiche simili. E' costituita da materiale argilloso-siltoso e sottili livelli di sabbie a base erosiva e geometria lenticolare.

Le aree omogenee che caratterizzano il piano particolareggiato sono:

- Zone definite stabili ma potenzialmente suscettibili di amplificazione sismica locale ZONA 2006 Depositi eluvio-colluviali costituiti da ghiaie e sabbie con frazione limosa (GM ghiaie limose e miscela di ghiaie, sabbie e limo) dello spessore variabile tra 3 e 10 m, soprastanti il substrato geologico rappresentato dai depositi pelitico-arenacei (ALS). Tale zona è stata riconosciuta sulla porzione sud-orientale del territorio, unicamente nella zona di transizione tra il litorale marino e i rilievi collinari costieri;
- Zone definite stabili ma potenzialmente suscettibili di amplificazione sismica locale ZONA 2007 - Depositi alluvionali costituiti da limi argilloso-sabbiosi (ML - limi inorganici, sabbie fini limose o argillose, limi argillosi di bassa plasticità) dello spessore variabile tra 1 e 13 m, soprastanti le ghiaie eterometriche (GW – ghiaie pulite con granulometria ben assortita)

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE							
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).						
02							
01							
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice		
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO		

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

dello spessore compreso tra 7 e 19 m, a loro volto adagiate sul substrato geologico rappresentato dai depositi pelitico-arenacei (ALS). Tale situazione si presenta diffusamente lungo la pianura costiera.

Zone di attenzione per instabilità da liquefazione (ZALQ) ZONA 3050-2010 - Depositi alluvionali costituiti da sabbie e ghiaie in vario predominio tra loro (SW – Sabbie pulite e ben assortite, sabbie ghiaiose) dello spessore variabile tra 3 e 22 m, soprastanti il substrato geologico rappresentato dai depositi pelitico-arenacei (ALS). Tale zona si estende su tutto il fondovalle del fiume Ete Vivo e su alcune porzioni del litorale marino sud, nei pressi della frazione Marina Palmense.

Le carte di Microzonazione sismica di livello II (Allegato 8), riportano i fattori di amplificazione FA per n. 3 intervalli di periodo che assumono i valori:

FATTORI DI AMPLIFICAZIONE FA - MOPS 2006						
0.1-0.5 Hz	0.4-0.8 Hz	0.7-1.1 Hz				
1.9	1.7	1.6				

FATTORI DI AMPLIFICAZIONE FA - MOPS 2007							
0.1-0.5 Hz							
1.7	1.8						

FATTORI DI AMPLIFICAZIONE FA - MOPS 2010						
0.1-0.5 Hz						
1.7	1.8					

Tabella 7: Fattori di amplificazione sismica FA per gli intervalli di 0.1-0.5, 0.4-0.8, 0.7-1.1 s.

In tale studio si ravvisa la presenza di un errore di rappresentazione grafica della M.O.P.S. instabile 30502010, in quanto nelle colonne sismo-stratigrafiche la MOPS 2010 è rappresentata da SW per uno spessore tra 2.0 e 22.0 ml su substrato ALS, mentre dalla Carta Geologico Tecnica si ravvisa la presenza di ML e GW-tm sul substrato ALS. Probabilmente la MOPS che rappresenta bene l'area è la ZONA 2008, caratterizzata da ML-ca per uno spessore di 3-13 ml. su GW-tm di spessore 10-22 ml., che ricopre il substrato ALS. Inoltre nel capitolo delle zone di attenzione per liquefazione ZALQ della relazione illustrativa, si considerano soggette a liquefazione le colonne sismo-stratigrafiche delle MOPS 2010, 2011, e 2012 e non la 2008.

REL	RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE					
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).					
02	02					
01						
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice	
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO	

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

E' stata redatta la carta della pericolosità sismica locale in scala 1:1.000 (Allegato 17) in cui è stata individuata una sola area con identico grado di pericolosità sismica locale:

GRADO DI PERICOLOSITA' SISMICA MEDIO, alle aree di versante caratterizzate da medio grado di acclività, con presenza di una coltre detritica di genesi colluviale, con litotipi granulari sciolti (D2) con discrete caratteristiche geotecniche, che poggia sul substrato pelitico laminato e sovra-consolidato (F1) ed aree di piana costiera sub-pianeggiante, con sedimenti di origine alluvionale prevalentemente sciolti (D1) ed in subordine coesivi (E2) ed in presenza di falda idrica. Per possibili fenomeni di amplificazione sismica dovuta alla differente risposta tra substrato e copertura. Al fine di valutare quantitativamente l'amplificazione sismica potranno essere effettuate specifiche analisi numeriche di risposta sismica locale.

VOCAZIONALITA'

La carta della vocazionalità in scala 1:1.000 (Allegato 18), redatta per tutte le aree interessate dalla variante, ed estesa ad un intorno ritenuto significativo, rappresenta a tutti gli effetti il documento di sintesi dello studio eseguito, in quanto riassume le informazioni sulle caratteristiche litologico-tecniche, geo-morfologiche, geotecniche, nonché sulla risposta sismica locale, in diverse categorie di vocazionalità rispetto alle previsioni della variante. In particolare sono stati definiti due diversi gradi di vocazionalità.

GRADO DI VOCAZIONALITA' ELEVATA

Aree di versante con medio grado di acclività con presenza di una coltre detritica di origine colluviale granulare sciolta (D2) con discrete caratteristiche geotecniche, che poggia sul substrato pelitico laminato e sovra-consolidato (F1), con grado medio di pericolosità sismica locale.

Aree di piana costiera sub-pianeggianti con sedimenti di origine alluvionale granulari prevalentemente sciolti (D1) ed in subordine coesivi (E2) ed in presenza di falda idrica, che poggiano sul substrato pelitico laminato e sovra-consolidato (F1), con grado medio di pericolosità sismica.

RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE						
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).					
02						
01						
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice	
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO	

GEOLOGO SPECIALISTA N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERTO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

La trasformazione è consentita previo studio geologico-geotecnico e sismico di dettaglio ai sensi del D.M. 11/03/1988 e con le relative verifiche di sicurezza previste dal D.M. 17/01/2018, al fine di analizzare, in sede esecutiva, l'interazione terreno-strutture e verificare le migliori condizioni per garantire l'efficacia e l'efficienza degli interventi previsti Nelle aree, in cui in sede di indagine in sito si riscontri la presenza delle fattispecie predisponenti a fenomeni di liquefazione previste dal D.M. 17/01/2018, l'edificazione è condizionata all'esito della verifica della stabilità del sito alla liquefazione.

Al fine di valutare quantitativamente l'amplificazione sismica, potranno essere effettuate specifiche analisi numeriche di risposta sismica locale.

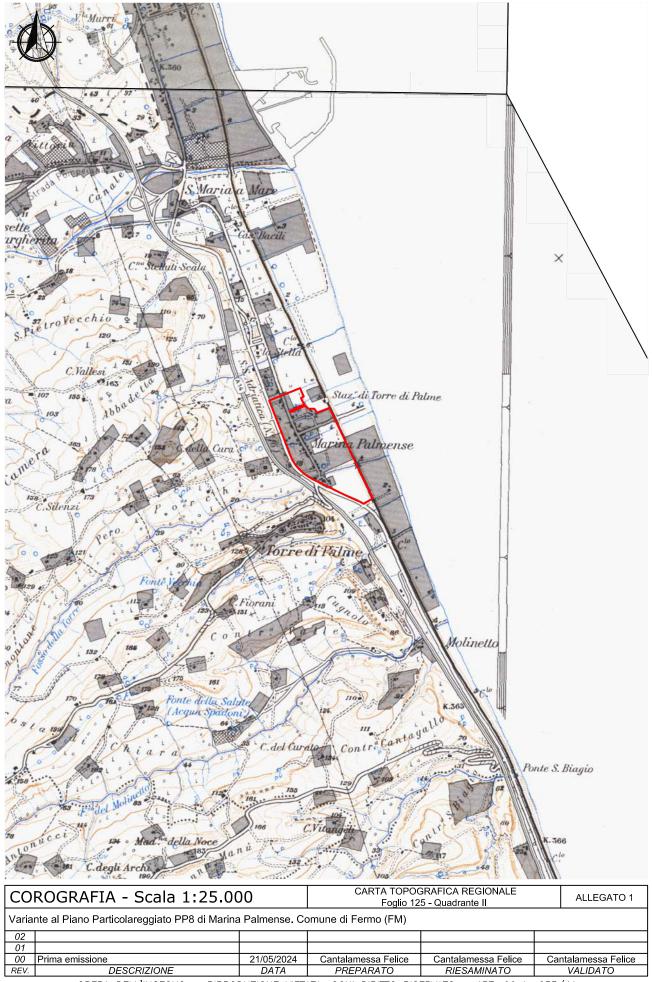
- AREE NON VOCATE

Aree a pericolosità geologica molto elevata, per la perimetrazione:

- 1: Piano Assetto Idrogeologico (P.A.I.) D.S. AUBAC n. 140 del 27.10.2021. Perimetrazione area a rischio idrogeologico per esondazione E-24-0001, con grado di rischio molto elevato "R4" del Piano Assetto Idrogeologico (P.A.I.).
- 2: Piano Gestione Integrata delle Zone Costiere (G.I.Z.C.) D.G.R.M. n 1015 del 08/08/2022. Perimetrazione aree a pericolosità con tempi di ritorno zona Tr>100 "scarsa probabilità di alluvioni o scenari di eventi estremi", di cui alla direttiva europea 2007/60/CE (Direttiva Alluvioni).

Per il passaggio al grado di vocazionalità elevato, dovranno essere effettuati e collaudati specifici interventi che consentano l'eliminazione di tutte le criticità idrauliche.

Il sottoscritto resta a disposizione per eventuali chiarimenti sul presente elaborato ed i suoi allegati.

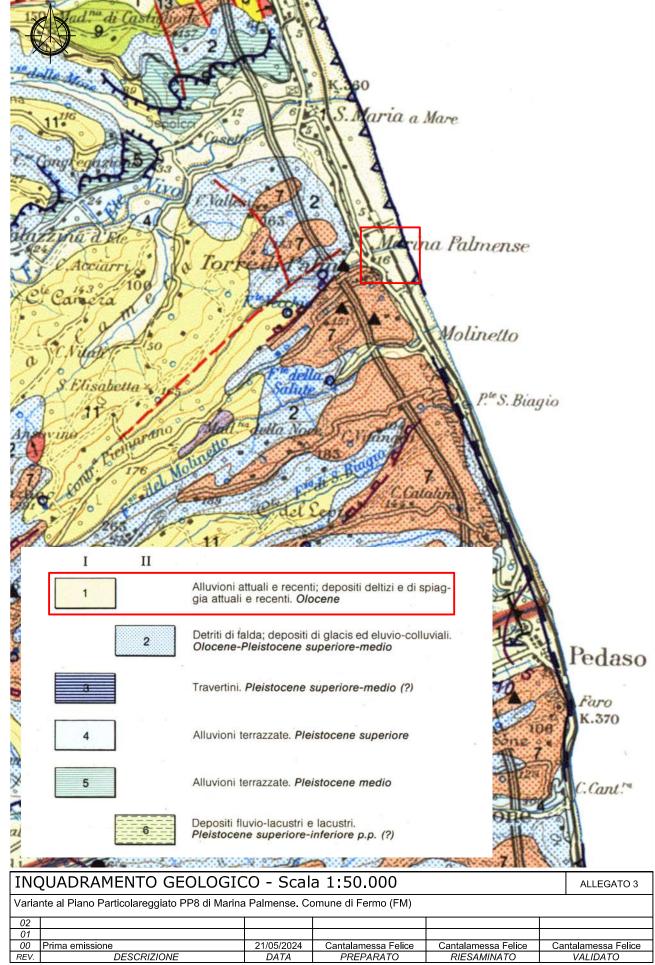

Ascoli Piceno, 21.05.2024

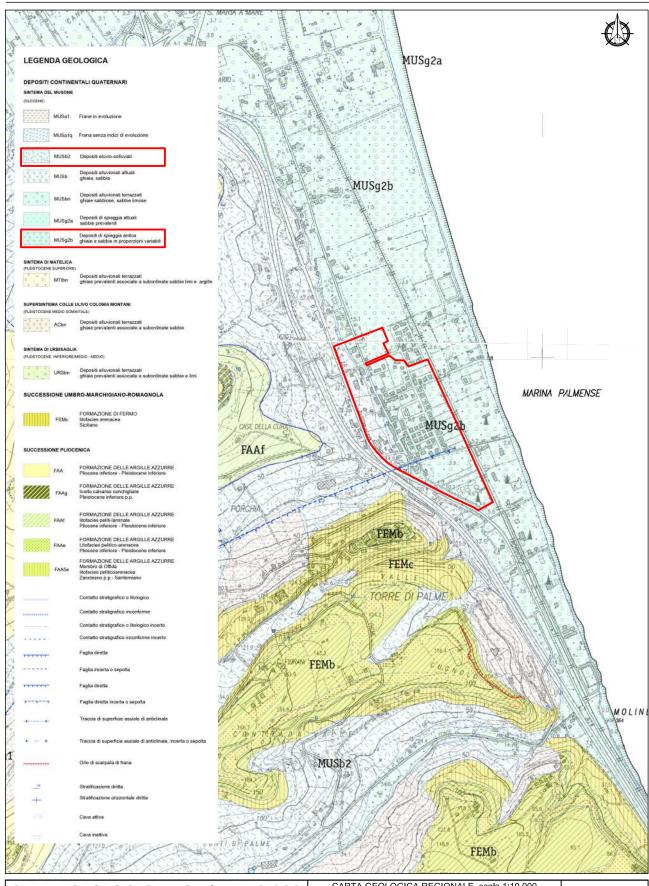
Dott. Geologo Felice Cantalamessa

n° 873 Albo sezione A Ordine dei Geologi della Regione Marche

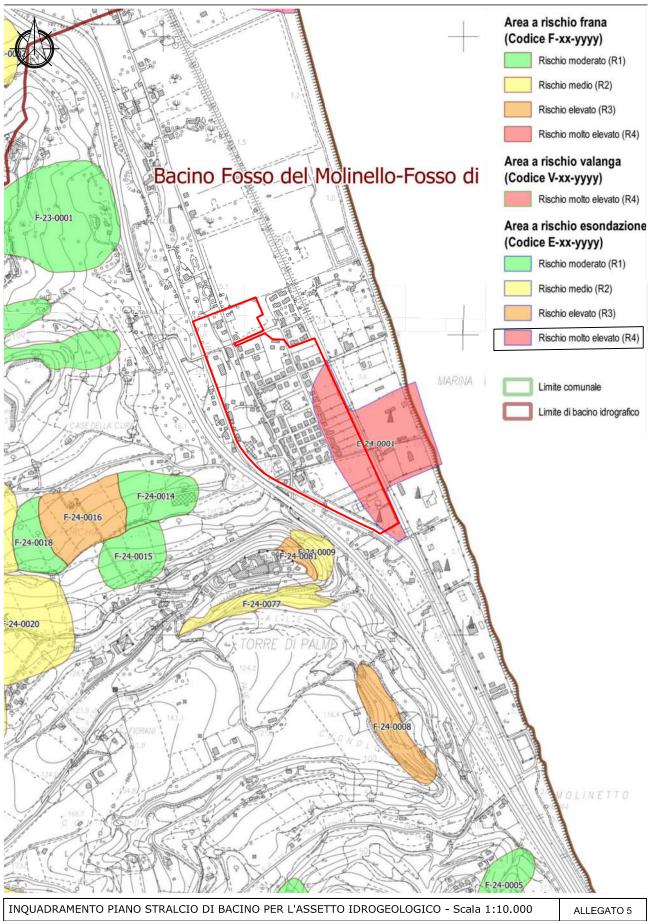
Documento informatico firmato digitalmente ai sensi del testo unico D.P.R. 28 dicembre 2000, n.445, del D.Lgs. 7 marzo 2005, n. 82 e norme collegate, il quale sostituisce il testo cartaceo e la firma autografa

REL	RELAZIONE GEOLOGICA E SULLE INDAGINI GEOTECNICHE E GEOFISICHE						
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM).						
02	02						
01							
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice		
REV	DOCUMENTO	DATA	PREPARATO	RIESAMINATO	VALIDATO		


GEOLOGO SPECIALISTA, N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B



WGS84: Lat 43.146286 - Lng 13.812699


ED50: Lat 43.147237 - Lng 13.813614

COORDINATE GEOGRAFICHE (GEOSTRU PARAMETRI SISMICI)							
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM)						
02	02						
01	01						
00 Prima emissione 21/05/2024 Cantalamessa Felice Cantalamessa Felice Cantalame							
REV	DESCRIZIONE	DATA	PREPARATO	RIESAMINATO	VALIDATO		

CAI	RTA GEOLOGICA - Scala 1	CARTA GEOLOGICA Sez. 315020 "Porto San					
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM)						
02							
01	01						
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice		
REV.	DESCRIZIONE	DATA	PREPARATO	RIESAMINATO	VALIDATO		

INQUADRAMENTO PIANO STRALCIO DI BACINO PER L'ASSETTO IDROGEOLOGICO - Scala 1:10.000							
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM)						
02	02						
01							
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice		
REV.	DESCRIZIONE	DATA	PREPARATO	RIESAMINATO	VALIDATO		

MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B LITOLOGIA DEL SUBSTRATO a Rocce prevalentemente pelitiche cce costituite da alternanze (arenaceo-pelitiche, pelitico-arenaceo, etc...) 04 Rocce prevalentemente conglomeratiche LITOLOGIA DELLA COPERTURA Depositi alluvionali prevalentemente ghiaiosi Depositi alluvionali prevalentemente sabbiosi 10 Depositi alluvionali prevalentemente limoso-argillosi Bo Depositi eluvio—colluviali prevalentemente ghiaiosi Depositi eluvio-colluviali prevalentemente limoso-argillosi **TETTONICA** Giacitura degli strati Faglia certa Faglia presunta IDROGRAFIA ED ALTRI ELEMENTI Reticolo idrografico Reticolo idrografico obliterato Ristagno d'acqua o zona acquitrinosa Area di accertato e recente alluvionamento Lago artificiale FORME, DEPOSITI E PROCESSI DI VERSANTE DOVUTI ALL'AZIONE DELLA GRAVITA' Orlo di scarpata poligenica interessata da crolli e/o caduta di detrito Corpo di frana di crollo e/o ribaltamento Corpo di frana di colamento Area interessata da deformazioni superficiali lente Contropendenza FORME, DEPOSITI E PROCESSI FLUVIALI DOVUTI ALL'AZIONE DELLE ACQUE CORRENTI SUPERFICIALI Orio di scarpata di erosione fluviale o torrentizia (< 5m) 4 Vallecola a V Vallecola a fondo concavo Area interessata da ruscellamento diffuso Alveo con tendenza all'approfondimento su substrato Alveo con tendenza all'approfondimento su depositi Erosione laterale di sponda Cascata e/o gradino naturale Calanco isolato e/o area calanchiva Depositi in alveo FORME ANTROPICHE Scarpata artificiale Manufatto X Canale artificiale Tratto di alveo intubato Tratto di alveo rivestito P Area impermeabilizzata (parcheggi, piazzali, opere di urbanizzazione; etc.) OPERE IDRAULICHE LONGITUDINALI Argine e difesa spondale artificiale (C: in cemento; T: in terra; G: gabbionate; B: opere di bioingegneria; M: muratura; R: rip-rap) OPERE IDRAULICHE TRASVERSALI IN ALVEO Sistemazione in alveo (soglie di fondo) Pennello Traversa o briglia The state of the s RILIEVO CRITICO DEL RETICOLO IDROGRAFICO MINORE (R.I.M.) ALLEGATO 6

DOTT. GEOLOGO FELICE CANTALAMESSA
GEOLOGO SPECIALISTA, N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE
VIA UMBERO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679

Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM)

DESCRIZIONE

21/05/2024 Cantalamessa Felice Cantalamessa Felice Cantalamessa Felice

RIESAMINATO

PREPARATO

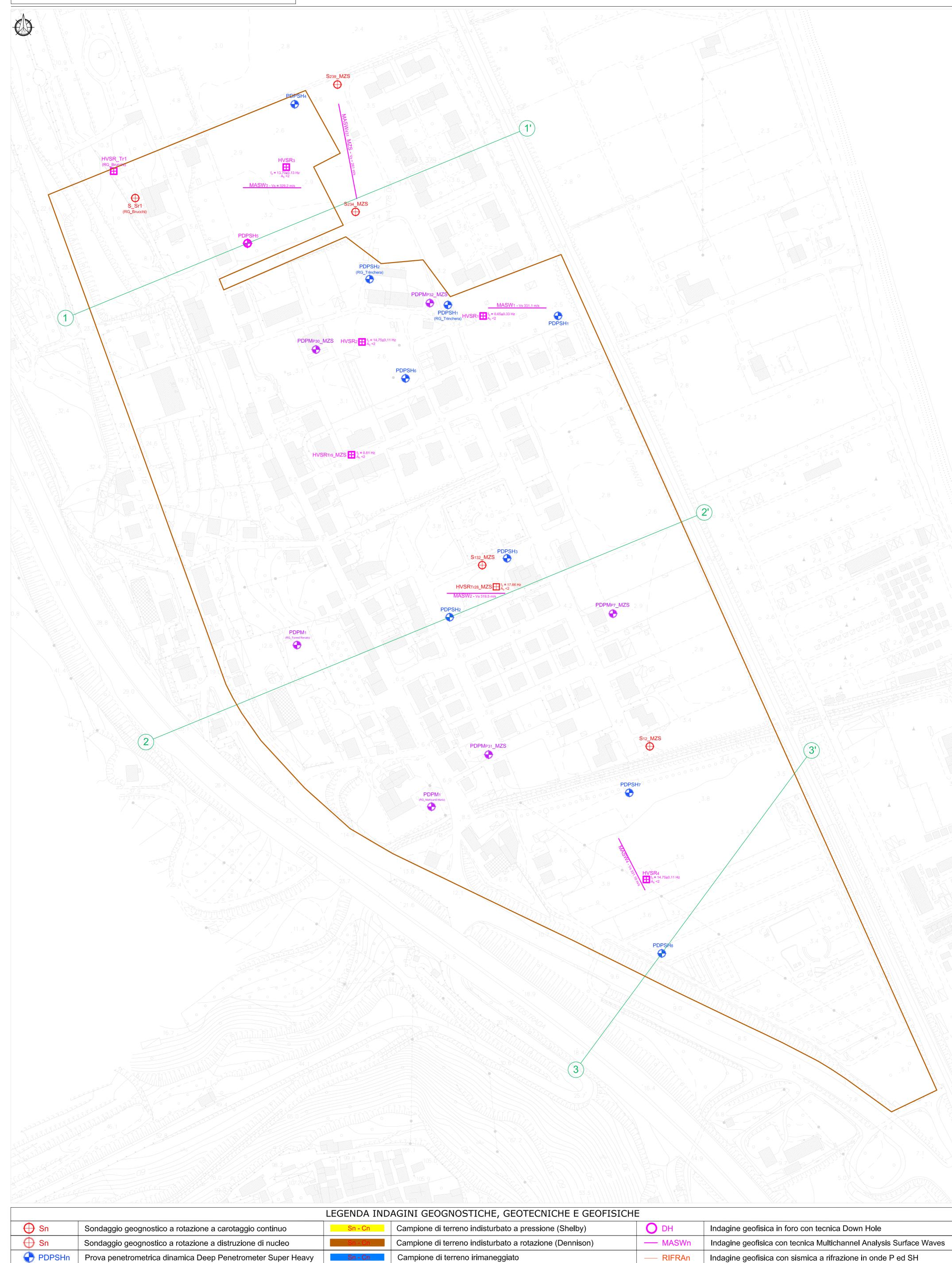
02

REV.

01 | 00 | Prima emissione

DOTT. GEOLOGO FELICE CANTALAMESSA GEOLOGO SPECIALISTA, N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 Mobile 349/2728161 - E-Mail: Felice.cantalamessa@gmail.com P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B 32.6 16.937 5.1 \$17.06M 2.96 3.9 41.9 16.937 17.064 Legenda 3.9 3.6 23.8 MARINA 2.8 Terreni di Copertura 3.9 3.6 MARINA P 4.9 ML - ca 2.8 46.1 132.2 9.7 5.6 CURA SE 46.1 DELLA 3.9 5.6 GW - tm 3,6 3.9 Legenda 3.0 10.2 ldagini Forme di superficie 4.5 10.2 Instabilità di versante crollo o ribaltamento - attiva ML - ca 5.6 5.9 15.8 3.1 106.4 10 Elementi geologici ADRIATICA 5.7 13.1 105.0 15.5 Area di studio di secondo livello 0.2 16.937 2.96 5.1 41.9 2,69 0.2 100 16 16.937 2.96 2006 145.7 3.9 3.6 Δ Legenda 23.8 MVSR 17,66 FA 0.1-0.5 3.6 Legenda MARINA 46.1 2.8 8.5 6.2 Zone di Attenzione per instabilità 46.1 8.5 2043 2007 5.6 1,7 a)Substrato geologico granulare cementato stratificato b) Substrato geologico alternanza di litotipi stratificato 1,8 36 Zona di attenzione per instabilità (livello 2) 10.2 Zone Stabili Suscettibili di Amplificazione Locale 1,7 6.4 1,9 105.0 1,6 2006 5.1 5.1 16.937 16.937 2.96 1,9 1,8 2.96 16 23.8 23.8 3.9 3.9 3.6 MARINA MARINA 2.8 32.2 4.9 ASE CURA 46.1 DELLA Zone stabili suscettibili di amplificazioni locali 1,9 5.6 1,8 1,8 1,7 Legenda FA 0.4-0.8 3,6 Zone stabili suscettibili di amplificazioni locali Zona di attenzione per instabilità (livello 2) Zona di attenzione per instabilità (livello 2) 1,7 1,6 6.4 1,7 106.4 1,6 1,9 105.0 1,8 MICROZONAZIONE SISMICA LIVELLO II ALLEGATO 7 Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM)

Cantalamessa Felice Cantalamessa Felice PREPARATO RIESAMINATO VALIDATO


OPERA DELL'INGEGNO - RIPRODUZIONE VIETATA, OGNI DIRITTO RISERVATO - ART. 99 L. 633/41

00 Prima emissione

DOTT. GEOLOGO FELICE CANTALAMESSA GEOLOGO SPECIALISTA, N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 Mobile 349/2728161 - E-Mail: Felice.cantalamessa@gmail.com P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B spiaggia di Fermo sud (Marina Palmense/Torre di Palme) 654 655 656 657 658 659 660 661 Staz.e di Torre di Palme **DESCRIZIONE FASCE** Unità Fisiografica Costiera Secondaria (UFCS) Unità Gestionale Costiera (UGC) - Coincide con il sito costiero ad eccezione di 4 casi evidenziati con un tratteggio, in cui il sito costiero coinvolge più UGC adiacenti NNN Transetto **ATTRAVERSAMENTI ACQUE A MARE** Acque a mare (torrenti, fossi, scarichi...) Attraversamenti (pedonali, stradali, ferroviari...) la Stella **VARIE** Limite Fascia di Rispetto ◆ Confine Comunale Transetto a terra ISE SCIA DI RISPETTO VARIE limite della fascia di rispetto limiti comunali linea demaniale anno 2013 Transetto a terra limite della zona dei 100 m limite della zona dei 30 m direttiva alluvioni limite della zona del tr 20 657 658 direttiva alluvioni limite della zona del tr 100 direttiva alluvioni limite della zona del tr > 100 NOTA: alcuni tematismi escono dall'area di stampa **COSTA DI RIFERIMENTO** fittizia porti fittizia foci fittizia artificiale; costa naturale AVANZAMENTO ARRETRAMENTO 2008-2019 - LINEA COSTA DI RIFERIMENTO < -10,0 m -10.0 - 0,0 m 0,0 - 10,0 m > 10,0 m Staze di Torre di Palme

PIANO GESTIONE INTEGRATA ZONE COSTIERE (G.I.Z.C.)

PIANO GIZC - Gestione Integrata delle Zone Costiere TAV 07/09 - UFCS 09-10 - Dal transetto 569 al transetto 670

⊞ HVSRn

— ERTn

Misura passiva microtremori Horizontal to Vertical Spectral Ratio

Tomografia elettrica

Indagine Georadar

PIAN	IO INDAGINI GEOGNOSTICHE, G	EOTECNICH	HE E GEOFISICHE		ALLEGATO 9							
Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM)												
02												
01												
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice							
REV.	DESCRIZIONE	DATA	PREPARATO	RIESAMINATO	VALIDATO							
OPERA DELL'INGEGNO - RIPRODUZIONE VIETATA, OGNI DIRITTO RISERVATO - ART. 99 L. 633/41												

Prova penetrometrica dinamica Deep Penetrometer Medium

Prova penetrometrica statica Cone Penetration Test

Prova Standard Penetration Test in foro di sondaggio

O PZn

PCn

⊕ In

Piezometro a tubo aperto

Piezometro di Casagrande

Tubo inclinometrico

₽ PDPMn

CPTn

DOTT. GEOLOGO FELICE CANTALAMESSA

GEOLOGO SPECIALISTA, N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

ALLEGATO 10 INDAGINI GEOGNOSTICHE, GEOTECNICHE IN SITO E GEOFISICHE REPERITE

Sondaggi geognostici a rotazione e carotaggio continuo

Prove Deep Probing Super Heavy (D.P.S.H.)

Prova con tecnica Multichannel Analisys Surface Wave (M.A.S.W.)

Misura passiva dei microtremori ambientali Horizontal to Vertical Spectral Ratio (H.V.S.R.)

IND	AGINI GEOGNOSTICHE, GEO	TECNICH	E IN SITO E GEO	OFISICHE REPER	ALLEGATO 10
Varia	nte al Piano Particolareggiato PP8 di Marina	a Palmense. Co	omune di Fermo (FM)		
02					
01					
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice
REV.	DESCRIZIONE	DATA	PREPARATO	RIESAMINATO	VALIDATO

Sondaggio geognostico reperito

ATA: 01.08.1985 COMUNE DI: FERMO

LOCALITÀ: MARINA PALMENSE
COMMITTENTE: TORRESI RENATO

SONDAGGIO N°: 12 TIPO: a ROTAZIONE DIAMETRO: 200 mm

Prof. (mt)	Spessore degli strati (mt)	PROFILO LITOLOGICO	Campioni IND. (mt)	Livello della FALDA (mt)	TERRENO ATTRAVERSATO	PENE TASC ST 30	TROM ABIL	ZA AL METRO E
2	-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			ALLUVIONI: Limi argilloso-sabbioso di colore grigio- giallastro			
5	_				ALLUVIONI: Ghiaie costituite da ciottoli arrotondati immersi in matrice sabbiosa.			
8		0000			FINE SONDAGGIO: -7,00 ml di profondità dal p.c.			
9								
11								
13								
14								
16					*			
17					<u>*</u>			
19								
21								

Sondaggio geognostico reperito

DATA: 07.08 1993

COMUNE DI: FERMO

OCALITÀ: MARINA PALMENSE

COMMITTENTE:

SONDAGGIO N°: 132 TIPO: a ROTAZIONE

DIAMETRO: 200 mm

Prof.	Spessore degli strati (mt)	PROFILO LITOLOGICO	Campioni IND. (mt)	Livello della FALDA (mt)	TERRENO	RESISTENZA AL PENETROMETRO TASCABILE ST 308 (Kg/cmq)
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			ALLUVIONI: sabbie in matrice limosa	
3				5	ALLUVIONI: Ghiaie in matrice sabbiosa	
5		and a Chairman Sa	7E	8		
7						æ
9	-	es .	ià.			
11			*			
13	Pa.)	8				
15			æ			
17		= ***	- 61 - 2	e e		
19				*		
21	-			10		

COMMITTENTE: Amministrazione comunale

LOCALITA': Marina Palmense (Area progetto n°28)

COMUNE: Fermo

f foro mt.:0.2

Rotazione
Percussione
Escavazione

SONDAGGIO N.234 Data: 02/01/2006

COMUNE:	rem	0		Escava	lone					
Stratigrafia scala 1:50	Quote dal p.c. m		CLASSIFICAZIONE GEO-LITOLOGICA			Vane test Kg/cm ² Cu	Pocket pen. 2 Kg/cm² qu	Camp. ■ Ind. □ Rim.	FALDA	SPT
1 2322333333333333333333333333333333333		DEPOSITI ALLUVIONALI	Limi sabbiosi con ciottoli sparsi		1 -					
2 200000	2.00	DEPOSI	Ghiaie e sabbie		2				_	
3 –					3 -					
4					4					
5					5					
6					6					
7					7					
8					8					
9					9					
10					10					
11					11 -	Total Parket				

COMMITTENTE: Amministrazione comunale

LOCALITA': Marina Palmense (Area progetto n°29)

COMUNE: Fermo

f foro mt.:0.2

Rotazione
Percussione
Escavazione

SONDAGGIO N.239 Data: 02/01/2006

	TOTTIO		Escavazione	1				
Stratigrafia scala 1:50	Quote dal p.c. m	CLASSIFICAZIONE GEO-LITOLOGICA		Vane test Kg/cm ² Cu	Pocket pen. Kg/cm² qu	Camp. ■ Ind. □ Rim.	FALDA	SPT
1	DEPOSITI ALLUVIONALI	Sabbie limose	1					
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EPOSITI A		2				~	
3	DE	Ghiaie e sabbie	3				-	
4			4					
5			5					
6			6					
7			7					
8			8					
9			9					
10			10					
11			11					

SUNDA Site Investigation

40123 BOLOGNA ■ Via Collegio di Spagna, 15 ■ Tel.051-333802

Certificato N : 95-89 Data : 10-02-89

PROVA PENETROMETRICA DINAMICA

COMMITTENTE : STANGHETTA

CANTIERE : MARINA PALMENSE

PENETROMETRO : DPL

COMUNE : FERMO LOCALITA' : MARINA PALMENSE

PICCHETTO :

PROVA N.RO : 7 DEL :10-02-89

INIZIO A ML : 0.00

FINE A ML : 6.20

Q.TA FALDA : 2.60

Q.TA PIANO CAMPAGNA: 0.00

COMMENTI:

Positione reparation de la contiere: Marina Palmense

IL TECNICO :

LABORATORIO :

PROVA PENETROMETRICA DINAMICA

CERTI	FICATO	N.RO: 95-89	7	CANTIE	RE :MARINA P	ALMENSE					
PROF.	NC	RD.	PROF.	NC	RD.	PROF.	NC	RD	PROF.	NC	2.
4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.30		3.54 3.54 3.54 3.54 21.21 21.21 24.75 24.75 28.29 25.55 25.5	5.00 5.10 5.20 5.30 5.50 5.60 5.70 5.80 6.10 6.20	21 19 20 21 21 22 22 24 21 31 21 20	48.35 48.35 48.35 48.35 50.65 50.65 55.26 48.35 45.20 45.20 43.04			P	7 documentaz ere: Marina Palr		

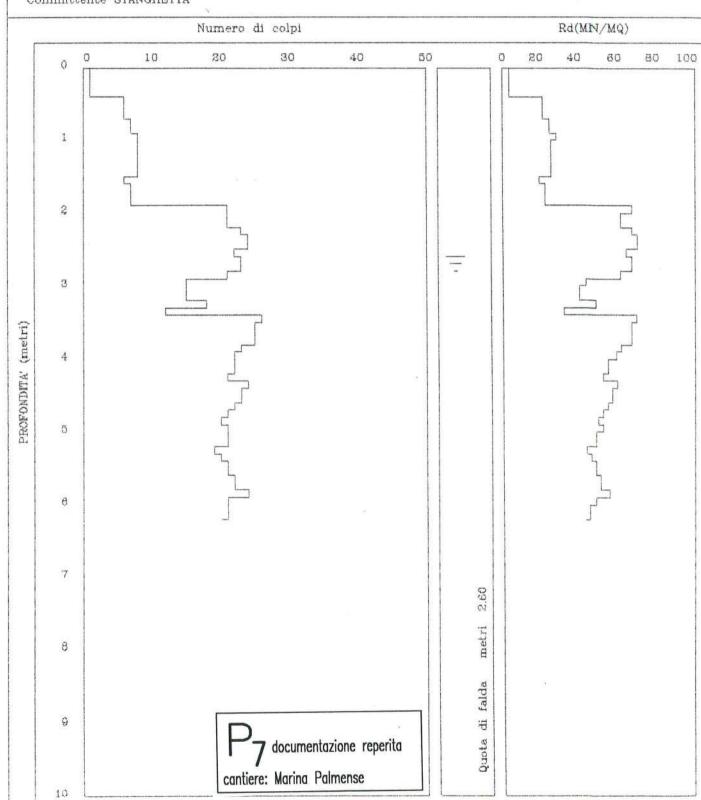
LEGENDA : FACE. = PROFONDITA' DI IMPISSIONE M.
VI = NUMBRC COLFI M.BC
CC = RESISTEMBA DINAMECA das. coq

CERTIFICATO N.RO :	35-33	CANTIERE	:MARIWA	PALMENSE	
--------------------	-------	----------	---------	----------	--

QUOTA m.	LITCLOGIA	FALDA m.	N.RO COLPI	C	Nspt equiv.	DENS. REL.%	ANGOLO ATTRITO	GAMMA kN/mc	SIGMA Cu daM/cmq daM/c	E mq daN/cmq	Υ daN/cmq	ij,	PAU SIGM
0.06 AG 0.30 AG	 					******							
0.30 SL 0.60 SL 0.90 SL 1.20 SL 1.50 SL 1.80 SL			7	0.50	9	37	27	13.0	0.19	131	19	3	0.0
1.80 SG 2.10 SG 2.40 SG 2.10 SG 3.00 SG 3.30 SG 3.80 SG 3.80 SG	0:	Co.	ž!	50	10	47	\$1	18.0	0.50	227	I 13	6	
3.30 3G 4.10 SG 4.40 SG 4.70 SG 5.00 SG 5.30 SG 5.60 SG 5.80 SG			22	0.50	TI	7.5	32	13.0	0.36	232	134	# # #	****
4 44 44	0:0:0:0:0:0: 0:0:0:0:0:0:	TO THE WAY AND THE PROPERTY OF	21	0.50	10	32	31	13.0	1.08	227	118		

T=TORBE - A=ARGILLE - LA=LIMI ARGILLOSI - LS=LIMI SABBIOSI - SL=SABBIE LIMOSE - S=SABBIE - SG=SABBIE/GHIAIE - AG=COPERTURA SUPER

P₇ documentazione reperita cantiere: Marina Palmense


DPL Dynamic Penetrometer Light

Certif.n. 95-89 del 10/02/1989

Picchetto n. Cantiere

MARINA PALMENSE

Committente STANGHETTA

STUDIO DI GEOLOGIA TECNICA

Dott. Geol. Andrea Ambrogi - Piazza C. Colombo, 6 - 63023 Fermo (AP)

Certificato N: 20-95

Data: 28-06-95

PROVA PENETROMETRICA DINAMICA STRATIGRAFIA ED INTERPRETAZIONE *** GEOTECNICA ***

COMMITTENTE : SANTARELLI ENRICO E ANDRENACCI ERMELINDA

CANTIERE : MARINA PALMENSE - FERMO

PENETROMETRO : DPL

COMUNE : Fermo LOCALITA' : Marina Palmense

PICCHETTO :2 /

PROVA N.RO : 2 DEL :20-06-95

INIZIO A ML : 0.00

FINE A ML : 2.50

Q.TA PIANO CAMPAGNA: 0.00

COMMENTI:

TECNICO: LABORATORIO:

P30 documentazione reperita cantiere: Marina Palmense

OVA PENETROMETRICA DINAMICA

PROF.	NC	RD.	PROF.	NC	RD.	PROF.	NC	RD	PROF.	NC	RD
0.00	10	35.36									
0.10	8	28.29									
0.20	8	28.29									
0.30	11	38.89									
0.40	13	45.96		30							
0.50	10	35.36		98		ĺ					
0.60	9	31.82									
0.70	7	24.75				1					
0.80	6	21.21									
0.90	5	17.68									
1.00	5 .	4. (75.55.55.55.5)									
1.10	7	22.35									
1.20	10	31.94									
1.30	10	31.94									
1.40	8	25.55				1					
1.50	6	19.16			*						
1.60	7	22.35				1					
1.70	12	38.32									
1.80	12	38.32									
1.90	12	38.32									
2.00	35	101.91									
2.10	43	125.21							1		
2.20	42	122.29									
2.30	44	128.12									
2.40	45	131.03									
2.50	45	131.03									

LEGENDA : PROF. = PROFONDITA' DI INFISSIONE m.

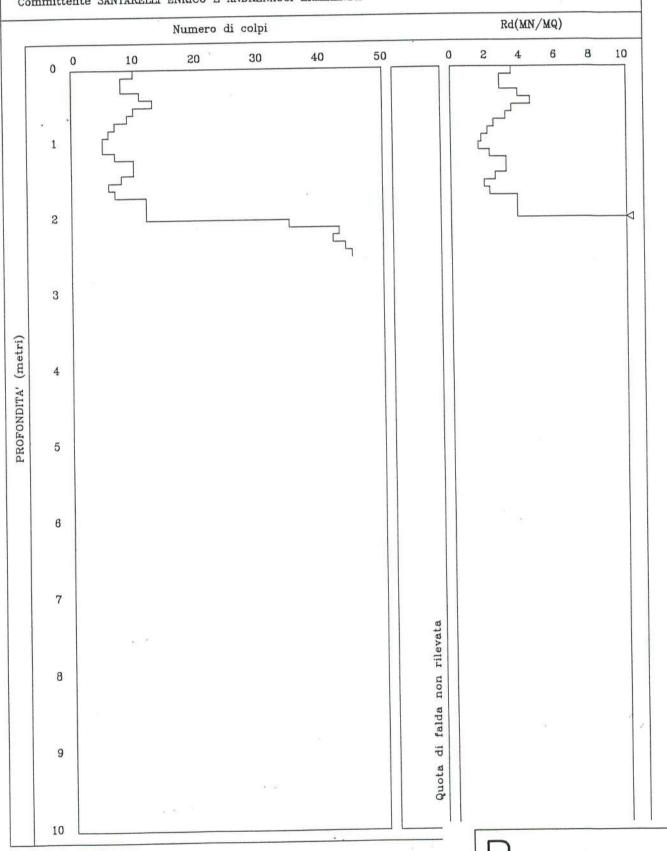
NC = NUMERO COLPI

N.RO

RD = RESISTENZA DINAMICA

daN/cmq

Dynamic Penetrometer Light DPL - Prova n. Picchetto n. 2


Certif.n. 20 - 95

del 28/06/1995

Cantiere

MARINA PALMENSE - FERMO

Committente SANTARELLI ENRICO E ANDRENACCI ERMELINDA

documentazione reperita cantiere: Marina Palmense

CERTIFICATO N.RO: 20-95 CANTIERE : MARINA PALMENSE - FERMO

QUOT?		LITOLOGIA	FALDA m.	N.RO COLPI	С	Nspt equiv.	DENS. REL. %	ANGOLO ATTRITO	GAMMA kn/mc	SIGMA dan/cmq	Cu daN/cmq	E daN/cmq	M daN/cmq	N'	TAU/ SIGMA
0.30	AG AG AG								•••••	•••••		••••••	······································		
0.90 1.20 1.50 1.80	SL SL SL SL SL SL			5	1.00	5	48	28	19.0	0.24		157	28	4	0.04
2.20	SG SG	0:0:0:0:0:0: 0:0:0:0:0:0:		40	0.60	24	>85	37	18.0	0.42		343	270	15	

T=TORBE - A=ARGILLE - LA=LIMI ARGILLOSI - LS=LIMI SABBIOSI - SL=SABBIE LIMOSE - S=SABBIE - SG=SABBIE/GHIAIE - AG=COPERTURA SUPER.

STUDIO DI GEOLOGIA TECNICA

Dott. Geol. Andrea Ambrogi - P.le C. Colombo, 6 - 63023 Fermo (AP)

Certificato N: 6-96

Data: 26-04-96

PROVA PENETROMETRICA DINAMICA STRATIGRAFIA ED INTERPRETAZIONE *** GEOTECNICA ***

COMMITTENTE : RAMADORI GIOVANNI

CANTIERE : MARINA PALMENSE - FERMO

PENETROMETRO : DPL

COMUNE : FERMO

LOCALITA' : MARINA PALMENSE

PICCHETTO :1 /

PROVA N.RO : 1

DEL: 26-04-96

INIZIO A ML : 0.00

FINE A ML : 5.90

Q.TA FALDA : 4.30

Q.TA PIANO CAMPAGNA: 0.00

COMMENTI:

prova condotta in assenza di attrito

IL TECNICO : DR. A. AMBROGI

LABORATORIO :

documentazione reperita cantiere: Marina Palmense

A PENETROMETRICA DINAMICA

ERTI	FICATO N	I.RO : 6-96		CANTIER	E :MARINA P.	ALMENSE - FER	RMO				
JF.	NC	RD.	PROF.	NC	RD.	PROF.	NC	RD	PROF.	NC	RD
0.00	9	31.82	5.00	6	13.81						
0.10	9	31.82	5.10	12	27.63						
0.20	16	56.57	5.20	9	20.72						
0.30	10	35.36	5.30	9	20.72						
0.40	4	14.14	5.40	33	75.98						
0.50	4	14.14	5.50	52	119.72	1			3		
0.60	4	14.14	5.60	70	161.16						
0.70	3	10.61	5.70	56	128.93						
0.80	6	21.21	5.80	45	103.60						
0.90	7	24.75	5.90	68	156.56						
1.00	7 9	28.74									
1.10	8	25.55				İ					
1.20	4	12.77									
1.30	4	12.77									
1.40	3	9.58				1					
1.50	6	19.16									
1.60	. 4	12.77				1					
1.70	8	25.55				1			1		
1.80	14	44.71				1					
1.90	8	25.55				1			1		
2.00	15	43.68				1					
2.10	37	107.74									
2.20	30	87.35									
2.30	17	49.50									
2.40	5	14.56									
2.50	4	11.65									
2.60	6	17.47									
2.70	10	29.12									
2.80	30	87.35									
2.90	10	29.12									
3.00	6	16.05									
3.10	7	18.73									
3.20	5	13.38									
3.30	5	13.38									
3.40	6	16.05									
3.50	6	16.05									
3.60	5	13.38			18						
3.70	5	13.38							- x		
3.80	5	13.38							+		
3.90	5	13.38	1								
4.00	15	37.13									
4.10	14	34.65									
4.20	5	12.38									
4.30	4	9.90									
4.40	3	7.43	1			1					
4.50	6	14.85									
4.60	5	12.38	F (W)			1					
4.70	Ā	9.90									
4.80	4	9.90									
4.90	6	14.85				1					
7.70	U	11107									

LEGENDA : PROF. = PROFONDITA' DI INFISSIONE m.

NC = NUMERO COLPI

N.RO

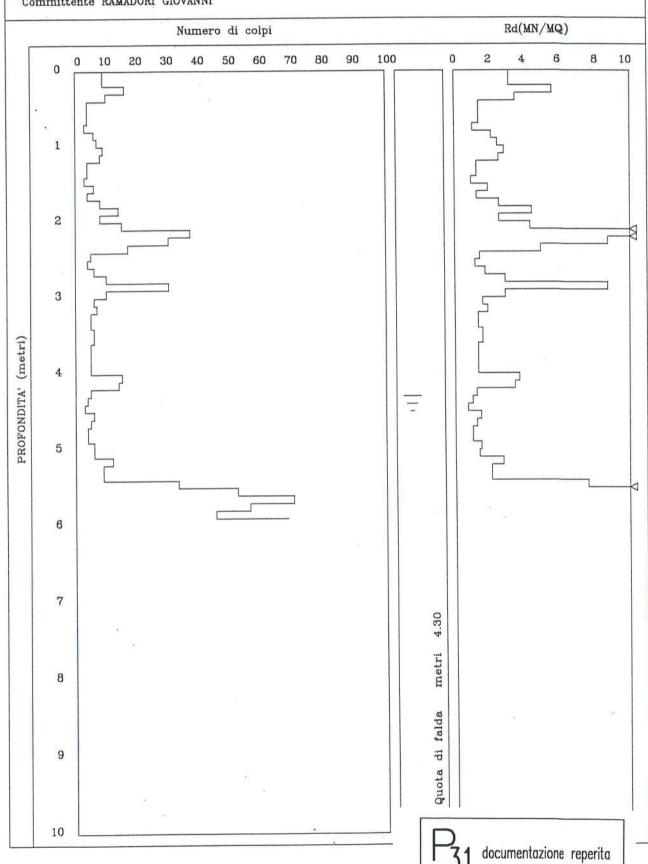
RD = RESISTENZA DINAMICA

daN/cmq

P31 documentazione reperita cantiere: Marina Palmense

Dynamic Penetrometer Light DPL

Certif.n. 6-96 del 26/04/1996


cantiere: Marina Palmense

Picchetto n. 1 / - Prova n.

Cantiere

MARINA PALMENSE - FERMO

Committente RAMADORI GIOVANNI

FICATO N.RO: 6-96 CANTIERE : MARINA PALMENSE - FERMO

JTA	LITOLOGIA	FALDA	N.RO COLPI	С	Nspt equiv.	DENS. REL.%	ANGOLO ATTRITO	GAMMA kn/mc	SIGMA daN/cmq	Cu daN/cmq	E daN/cmq	M daN/cmq	N'	TAU/ SIGMA
0.00 AG 0.30 AG 0.40 AG								•••••						
0.40 LS 0.70 LS 0.80 LS	~.~.~.~. ~.~.~.~. ~.~.~.~.		4	1.00	4	43	27	19.0	0.11		140	10	3	• • • • • • • • • • • • • • • • • • • •
0.80 LS 1.10 LS	~.~.~.~. ~.~.~.~.	1	8	0.90	7	54	29	19.0	0.18	•••••	188	18	6	
1.60 LS	~,~,~,~,*, ~,~,~,~,*, ~,~,~,~,*,	٠	4	1.00	4	37	27	19.0	0.26		140	10	3	
1.60 LS 1.90 LS	and the state of t		8	0.90	7	46	29	19.0	0.33	••••••	188	18	5	
1.90 S 2.20 S 2.30 S			17	0.80	13	59	33	19.0	0.40	*******	258	75	9	0.10
73 TO	~.~.~.~. ~.~.~.~.		5	1.00	5	34	28	19.0	0.47	*******	157	13	3	•••••
2.60 S 2.90 S			10	0.90	9	43	31	19.0	0.52		210	50	5	0.06
2.90 LS 3.20 LS 3.50 LS 3.80 LS 3.90 LS	~,~,~,~,~, ~,~,~,~, ~,~,~,~, ~,~,~,~, ~,~,~,~,		5	1.00	5	29	28	19.0	0.65	••••••	157	13	3	
4.10 S		•••••	14	0.80	 11	40	32	19.0	0.76		234	62	 5	0.06
4.40 LS 4.70 LS 5.00 LS	~.~.~. ~.~.~. ~.~.~. ~.~.~.	4.50	5	1.00	5	25	28	19.0	0.86		157	13	2	
	~.~.~.~. ~.~.~.~.		9 (0.90	8	30	30	19.0	0.98		199	20	3	
5.30 SG 5.60 SG	0:0:0:0:0:0:		60 (70	42	65	43	18.0	1.06		454	473	17	

T=TORBE - A=ARGILLE - LA=LIMI ARGILLOSI - LS=LIMI SABBIOSI - SL=SABBIE LIMOSE - S=SABBIE - SG=SABBIE/GHIAIE - AG=COPERTURA SUPER.

documentazione reperita cantiere: Marina Palmense

PDPMP32_MZS

Certificato N: 60-97

Data: 22-07-97

PROVA PENETROMETRICA DINAMICA STRATIGRAFIA ED INTERPRETAZIONE *** GEOTECNICA ***

COMMITTENTE :TRINCHERA GIOIA E ALTRI

CANTIERE : MARINA PALMENSE - FERMO

PENETROMETRO : DPL

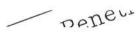
COMUNE : FERMO LOCALITA' : Marina Palmense

PICCHETTO :1 /

PROVA N.RO : 1 DEL :21-05-97

INIZIO A ML: 0.00

FINE A ML : 3.50


Q.TA FALDA : 2.10

Q.TA PIANO CAMPAGNA: 0.00

COMMENTI :

IL TECNICO : LABORATORIO :

documentazione reperita cantiere: Marina Palmense

Rd(MN/ "B

JVA PENETROMETRICA DINAMICA

CERT	TIFICATO	N.RO: 60-97		CANTIE	RE : MARINA	PALMENSE - FE	RMO				
PROF.	NC	RD.	PROF.	NC	RD.	PROF.	NC	RD	PROF.	NC	RD
0.00	27	95.46			•						
0.10	27	95.46									
0.20	36	127.29									
0.30	33	116.68	1			1					
0.40	31	109.61	¥7								
0.50	25	88.39									
0.60	20	70.71		20		1					
0.70	17	60.11				1					
0.80	15	53.04				1					
0.90	5	17.68				1					
1.00	3	9.58									
1.10	4	12.77									
1.20	6	19.16									
1.30	23	73.45									
1.40	30	95.81									
1.50	38	121.35						1			
1.60	28	89.42									
1.70	17	54.29									
1.80	17	54.29									
1.90	24	76.65									
2.00	33	96.09									
2.10	46	133.94									
2.20	59	171.79									
2.30	65	189.26									
2.40	59	171.79						1			
2.50	55	160.15						1		10	
2.60	37	107.74				1		1			
2.70	26	75.71						1			
2.80	30	87.35									
2.90	39	113.56						1			
3.00	35	93.65									
3.10	65	173.92						1			
3.20	62	165.89						1			
3.30	58	155.19						1			
3.40	56	149.84				l .		1			
3.50	52							1			
3.30	36	139.14				1					

LEGENDA : PROF. = PROFONDITA' DI INFISSIONE m.

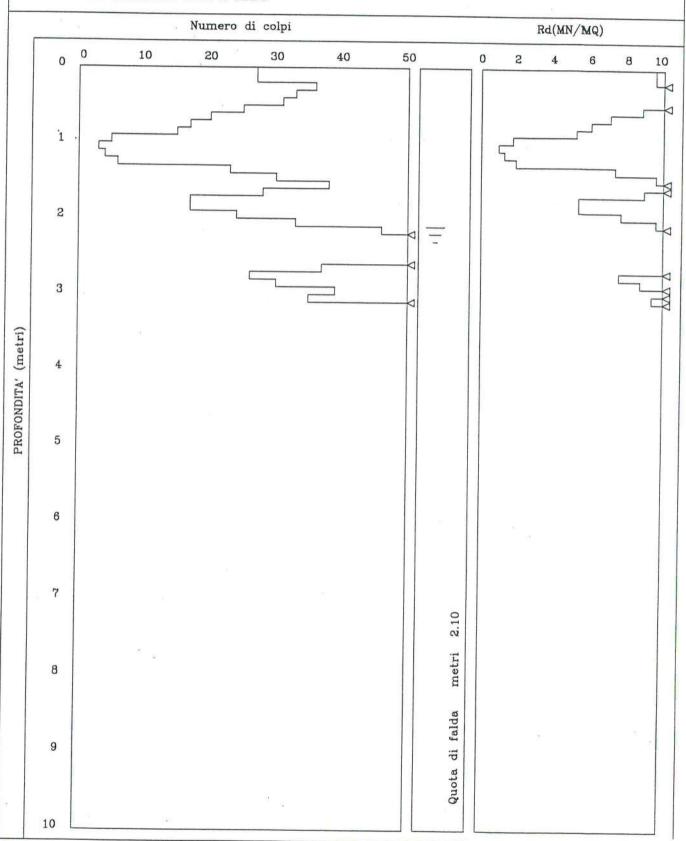
NC = NUMERO COLPI

N.RO

RD = RESISTENZA DINAMICA

daN/cmq

DPL Dynamic Penetrometer Light


Picchetto n. 1 / - Prova n. 1

Cantiere

MARINA PALMENSE - FERMO

Committente TRINCHERA GIOIA E ALTRI

Certif.n. 60-97 del 22/07/1997

CERTIFICATO N.RO : 60-97 CANTIERE : MARINA PALMENSE - FERMO

QUQ n.	TA .	LITOLOGIA	FALDA n.	N.RO COLPI	С	Nspt equiv.	DENS. REL. %	ANGOLO ATTRITO	GAMMA kn/mc	SIGMA Cu dan/cmq dan/c	E nq daN/cnq	M daN/cmq	η,	TAU/ SIGMA
0.00 0.30 0.40	AG AG			•••••				**********	•••••					••••••
0.40 0.70 0.80	SG	0:0:0:0:0:0: 0:0:0:0:0:0: 0:0:0:0:0:0:	,	17	1.00	17	>85	34	18.5	0.11	289	191	15	
0.80 1.10 1.20	LS LS	~.~.~.~ ~.~.~.~ ~.~.~.~.		4	1.00	4	45	27	19.0	0.19	140	10	3	
	SG SG SG	0:0:0:0:0:0: 0:0:0:0:0:0: 0:0:0:0:0:0:	.,	24	0.95	22	>85	37	18.5	0.26	334	257	17	
1.80	LS LS	~,~,~,~, ~,~,~,~,		17	1.00	17	>85	34	19.0	0.32	289	43	12	
2.10	SG SG	0:0:0:0:0: 0:0:0:0:0: 0:0:0:0:0:	2.10	40	0.85	34	>85	40	18.5	0.41	408	383	21	
2.60 2.90 3.00	SG SG SG	0:0:0:0:0: 0:0:0:0:0: 0:0:0:0:0:		32	0.90	28	>85	39	18.5	0.52	376	324	17	•••••
	SG SG	0:0:0:0:0: 0:0:0:0:0: 0:0:0:0:0:		52	0.80	41	>85	43	18.5	0.61	451	468	22	

T=TORBE - A=ARGILLE - LA=LIMI ARGILLOSI - LS=LIMI SABBIOSI - SL=SABBIE LIMOSE - S=SABBIE - SG=SABBIE/GHIAIE - AG=COPERTURA SUPER.

MARINA PALMENSE – MASW 431

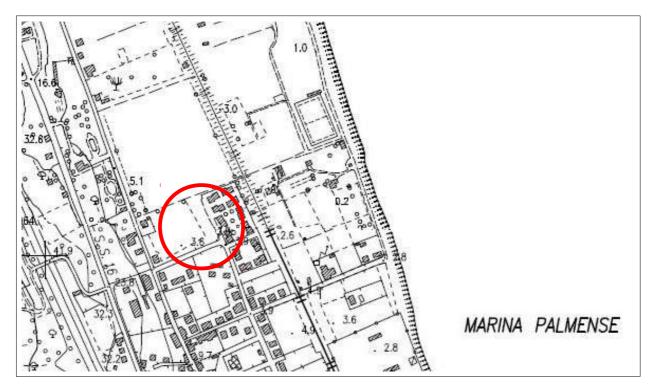


Fig. N° 431 - 01: Stralcio CTR.

Fig. Nº 431 - 02: Foto Aerea con Ubicazione Stendimento.

	Data di Esecuzi	one:	26/09/2013						
Lunghezza Stendimento:			55 m						
Distanza Intergeofonica:			Geofoni Orizzonta	Geofoni Orizzontali: 5 m					
Periodo di Campionamento:				125 μs					
N°	Nome	Onda Acquisita			Lunghezza uisizione (μs)	Stacking n° colpi			
1	THFDX5MO5	Love	5		1024	5			
2	THFDX5MO7,5	Love	7,5		1024	5			
3	THFDX5MO7,5	Love	7,5		1024	5			
4	RVFDX5MO5	Rayleigh	5		1024	5			
5	RVFDX5MO7,5	Rayleigh	7,5		1024	5			

Fig. N° 431 - 03: Parametri Acquisizione.

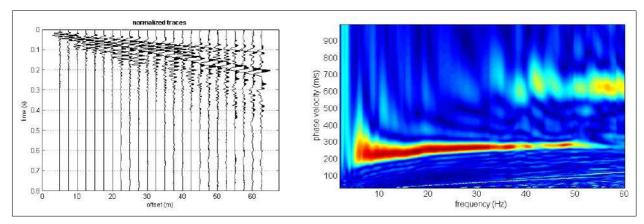


Fig. Nº 431 - 04: Dataset acquisito e relativo Spettro di Velocità – Onde di Rayleigh.

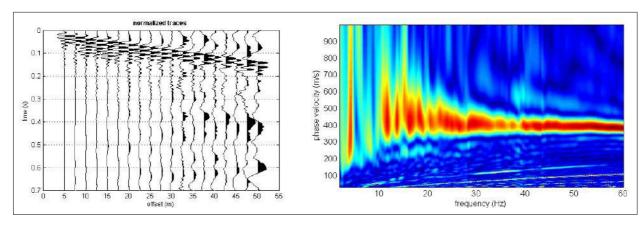


Fig. Nº 431 - 05: Dataset acquisito e relativo Spettro di Velocità – Onde di Love.

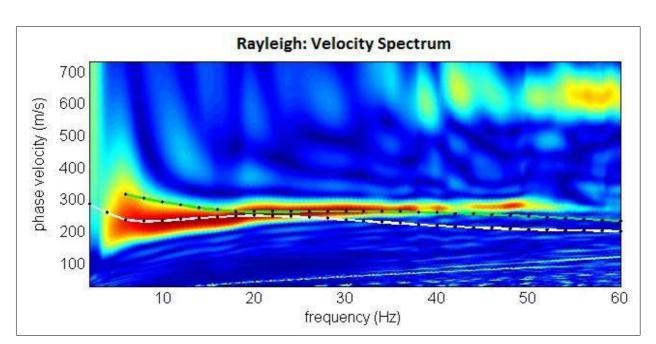


Fig. N°431 - 06: Spettro di Velocità con Curva di Dispersione – Onde di Rayleigh.

Spessore (m)	Vs (m/sec)						
0,8	210	V _{sh} profile					
1,2	230						
1,5	300	£ 10					
1,8	310	(E) 10					
2	320	<u> </u>					
5	190	150 000 050 000					
13	260	150 200 250 300 V _s (m/s)					
/	300	\$ ` '					

Fig. N° 431 - 07: Sismostratigrafia.

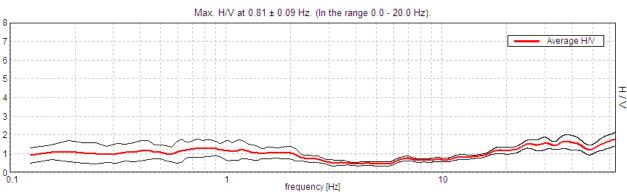
FERMO, SCUOLA MARINA PALMENSE TR9

Strumento: TRZ-0175/01-12

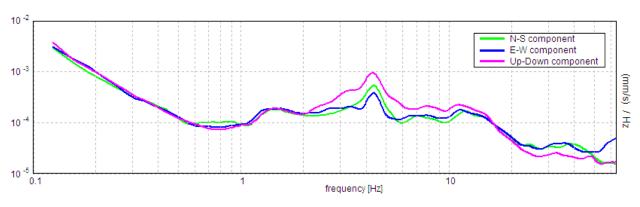
Inizio registrazione: 03/07/13 11:57:26 Fine registrazione: 03/07/13 12:09:26

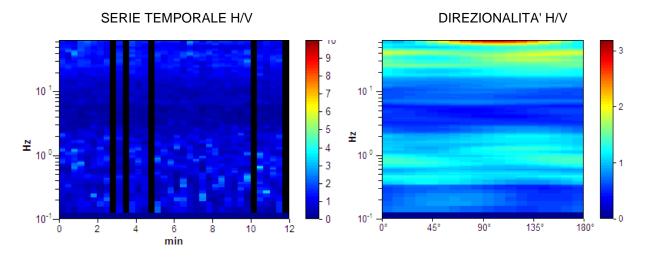
Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

Dato GPS non disponibile


Durata registrazione: 0h12'00". Analizzato 86% tracciato (selezione manuale)

Freq. campionamento: 128 Hz Lunghezza finestre: 20 s


Tipo di lisciamento: Triangular window


Lisciamento: 10%

RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE

SPETTRI DELLE SINGOLE COMPONENTI

Picco H/V a 0.81 ± 0.09 Hz (nell'intervallo 0.0 - 20.0 Hz).

Criteri per una curva H/V affidabile [Tutti 3 dovrebbero risultare soddisfatti] $f_0 > 10 / L_w$ 0.81 > 0.50OK $n_c(f_0) > 200$ 503.8 > 200 OK $\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$ Superato 0 volte su 40 OK $\sigma_A(f) < 3 \ per \ 0.5 f_0 < f < 2 f_0 \ se \ f_0 < 0.5 Hz$ Criteri per un picco H/V chiaro [Almeno 5 su 6 dovrebbero essere soddisfatti] Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ NO 2.781 Hz OK $A_0 > 2$ 1.29 > 2 NO |0.053| < 0.05 $f_{\text{picco}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$ NO $\sigma_f < \epsilon(f_0)$ 0.04306 < 0.12188OK

L _w	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f_0	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \epsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f -	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^-) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
,	essere moltiplicata o divisa
$\sigma_{\text{logH/V}}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

 $\sigma_A(f_0) < \theta(f_0)$

0.2105 < 2.0

OK

Valori di soglia per σ_f e $\sigma_A(f_0)$								
Intervallo di freq. [Hz]	< 0.2	0.2 - 0.5	0.5 - 1.0	1.0 - 2.0	> 2.0			
$\epsilon(f_0)$ [Hz] 0.25 f_0 0.2 f_0 0.15 f_0 0.10 f_0 0.05 f_0								
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58			
$\log \theta(f_0) \text{ per } \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20			

FERMO, MARINA PALMENSE TR 28

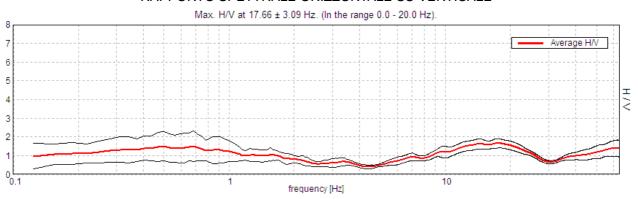
Strumento: TRZ-0175/01-12

Inizio registrazione: 06/09/13 12:19:22 Fine registrazione: 06/09/13 12:31:22

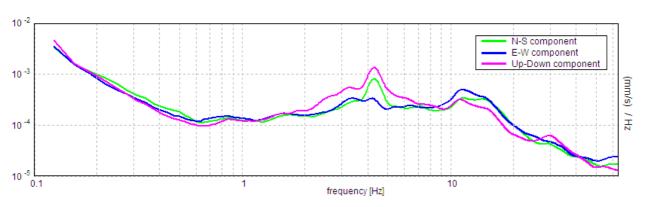
Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

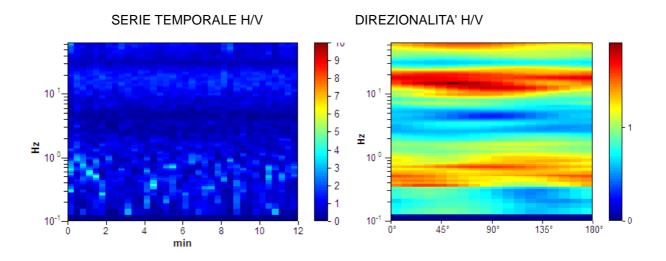
Dato GPS non disponibile

Durata registrazione: 0h12'00". Analisi effettuata sull'intera traccia.


Freq. campionamento: 128 Hz

Lunghezza finestre: 20 s


Tipo di lisciamento: Triangular window


Lisciamento: 10%

RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE

SPETTRI DELLE SINGOLE COMPONENTI

Picco H/V a 17.66 ± 3.09 Hz (nell'intervallo 0.0 - 20.0 Hz).

Criteri per una curva H/V affidabile

[Tutti 3 dovrebbero risultare soddisfatti]

$f_0 > 10 / L_w$	17.66 > 0.50	OK	
$n_c(f_0) > 200$	12712.5 > 200	OK	
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$	Superato 0 volte su 848	OK	
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$			

Criteri per un picco H/V chiaro [Almeno 5 su 6 dovrebbero essere soddisfatti]

Esiste f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	6.469 Hz	OK	
Esiste f ⁺ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	27.469 Hz	OK	
A ₀ > 2	1.65 > 2		NO
$f_{picco}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0.08484 < 0.05		NO
$\sigma_{\rm f} < \epsilon(f_0)$	1.49796 < 0.88281		NO
$\sigma_{A}(f_{0}) < \theta(f_{0})$	0.1163 < 1.58	OK	

L _w	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f_0	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \varepsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f-`	frequenza tra f ₀ /4 e f ₀ alla quale A _{H/V} (f ⁻) < A ₀ /2
f +	frequenza tra f₀ e 4f₀ alla quale A _{H/V} (f +) < A₀/2
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
	essere moltiplicata o divisa
$\sigma_{logH/V}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

Valori di soglia per $\sigma_f e \sigma_A(f_0)$							
Intervallo di freq. [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0		
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀		
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58		
$\log \theta(f_0) \text{ per } \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20		

DOTT. GEOLOGO FELICE CANTALAMESSA

GEOLOGO SPECIALISTA, N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

ALLEGATO 11 INDAGINI GEOTECNICHE IN SITO

Prove Deep Probing Super Heavy (D.P.S.H.)

INDAGINI GEOTECNICHE IN SITO									
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM)								
02									
01									
00	00 Prima emissione 21/05/2024 Cantalamessa Felice Cantalamessa Felice Cantalamessa Felice								
REV.	REV. DESCRIZIONE DATA PREPARATO RIESAMINATO VALIDATO								

STRATI Indagini Geognostiche s.a.s.

PROVA PENETROMETRICA DINAMICA

Committente: Amm.ne Comunale Descrizione: Marina Palmense Localita': Fermo

Caratteristiche Tecniche-Strumentali Sonda: DPSH TG 63-2	00 PAGANI
Rif. Norme	DIN 4094
Peso Massa battente	63,5 Kg
Altezza di caduta libera	0,75 m
Peso sistema di battuta	0,63 Kg
Diametro punta conica	51,00 mm
Area di base punta	$20,43 \text{ cm}^2$
Lunghezza delle aste	1 m
Peso aste a metro	6,31 Kg/m
Profondita' giunzione prima	asta 0,40 m
Avanzamento punta	0,20 m
Numero colpi per punta	N(20)
Coeff. Correlazione	1,47
Rivestimento/fanghi	No
Angolo di apertura punta	90°

PROVA ... Nr.1

Strumento utilizzato... Prova eseguita in data Profondita' prova Falda non rilevata DPSH TG 63-200 PAGANI 22/04/2024 1,60 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,20	3	0,855	26,94	31,52	1,35	1,58
0,40	7	0,851	62,58	73,55	3,13	3,68
0,60	5	0,847	40,84	48,22	2,04	2,41
0,80	4	0,843	32,53	38,57	1,63	1,93
1,00	8	0,840	64,78	77,15	3,24	3,86
1,20	28	0,736	198,80	270,02	9,94	13,50
1,40	35	0,683	230,48	337,52	11,52	16,88
1,60	38	0,680	230,10	338,61	11,51	16,93

Prof. Strato	NPDM	Rd	Tipo	Peso unita'	Peso unita'	Tensione	Coeff. di	NSPT	Descrizione
(m)		(Kg/cm ²)		di volume	di volume	efficace	correlaz. con		
				(t/m^3)	saturo	(Kg/cm ²)	Nspt		
					(t/m^3)				
1	5,4	53,8	Incoerente	1,66	1,91	0,08	1,47	7,94	sabbia limosa
1,6	33,67	315,38	Incoerente	2,24	2,16	0,23	1,47	49,49	ghiaia debolmente
									sabbiosa

STIMA PARAMETRI GEOTECNICI PROVA Nr.1

TERRENI INCOERENTI

Dens	rito!	ra	oti	170

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)	7,94	0.00-1,00	7,94	Meyerhof 1957	66,87
sabbia limosa					
Strato (2)	49,49	1,00-1,60	49,49	Meyerhof 1957	100
ghiaia debolmente					
sabbiosa					

Angolo di resistenza al taglio

Tingoto al repiblement al la	8				
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1)	7,94	0.00-1,00	7,94	Meyerhof (1956)	22,27
sabbia limosa					
Strato (2)	49,49	1,00-1,60	49,49	Mitchell & Katti (1981)	35-38
ghiaia debolmente					
sabbiosa					

Modulo di Young

Wiodulo di Toding					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo di Young
		(m)			(Kg/cm ²)
Strato (1)	7,94	0.00-1,00	7,94	Schultze-Menzenbach	87,18
sabbia limosa				Sabbia limosa	
Strato (2)	49,49	1,00-1,60	49,49	Schultze-Menzenbach	650,85
ghiaia debolmente				Ghiaia e Sabbia	
sabbiosa					

Modulo Edometrico

mount Dadmented					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo Edometrico
		(m)			(Kg/cm ²)
Strato (1)	7,94	0.00-1,00	7,94	Menzenbach e Malcev	73,41
sabbia limosa				(Sabbia media)	
Strato (2)	49,49	1,00-1,60	49,49	Menzenbach e Malcev	258,73
ghiaia debolmente				(Sabbia media)	
sabbiosa					

Classificazione AGI

Classificazione AGI					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione AGI
		(m)			
Strato (1)	7,94	0.00-1,00	7,94	Classificazione A.G.I	POCO ADDENSATO
sabbia limosa					
Strato (2)	49,49	1,00-1,60	49,49	Classificazione A.G.I	ADDENSATO
ghiaia debolmente					
sabbiosa					

Peso unita' di volume

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita' di Volume
		(m)			(t/m³)
Strato (1)	7,94	0.00-1,00	7,94	Terzaghi-Peck 1948	1,45
sabbia limosa					
Strato (2)	49,49	1,00-1,60	49,49	Terzaghi-Peck 1948	1,85
ghiaia debolmente					
sabbiosa					

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita' Volume
		(m)			Saturo
					(t/m^3)
Strato (1)	7,94	0.00-1,00	7,94	Terzaghi-Peck 1948	1,90
sabbia limosa					
Strato (2)	49,49	1,00-1,60	49,49	Terzaghi-Peck 1948	2,15
ghiaia debolmente					
sabbiosa					

Modulo	di	Poisson
Modulo	uı	1 0155011

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Poisson
		(m)			
Strato (1)	7,94	0.00-1,00	7,94	(A.G.I.)	0,34

sabbia limosa					
Strato (2)	49,49	1,00-1,60	49,49	(A.G.I.)	0,25
ghiaia debolmente					
sabbiosa					

Modulo di deformazione a taglio dinamico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm ²)
Strato (1)	7,94	0.00-1,00	7,94	Ohsaki (Sabbie pulite)	455,77
sabbia limosa					
Strato (2)	49,49	1,00-1,60	49,49	Ohsaki (Sabbie pulite)	2545,42
ghiaia debolmente					
sabbiosa					

Velocita' onde di taglio

v ciocita onde di tagno					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Velocita' onde di taglio
		(m)			(m/s)
Strato (1)	7,94	0.00-1,00	7,94	Ohta & Goto (1978)	85,64
sabbia limosa				Limi	
Strato (2)	49,49	1,00-1,60	49,49	Ohta & Goto (1978)	141,34
ghiaia debolmente				Limi	
sabbiosa					

Coefficiente spinta a Riposo

Coefficiente spinta a Ripo					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	K0
		(m)			
Strato (1)	7,94	0.00-1,00	7,94	Navfac 1971-1982	1,65
sabbia limosa					
Strato (2)	49,49	1,00-1,60	49,49	Navfac 1971-1982	8,11
ghiaia debolmente					
sabbiosa					

Qc (Resistenza punta Penetrometro Statico)

_									
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc				
		(m)			(Kg/cm ²)				
Strato (1)	7,94	0.00-1,00	7,94	Robertson 1983	15,88				
sabbia limosa									
Strato (2)	49,49	1,00-1,60	49,49	Robertson 1983	98,98				
ghiaia debolmente									
sabbiosa									

PROVA ... Nr.2

Strumento utilizzato... Prova eseguita in data Profondita' prova Falda non rilevata DPSH TG 63-200 PAGANI 22/04/2024 1,40 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,20	6	0,855	53,88	63,04	2,69	3,15
0,40	4	0,851	35,76	42,03	1,79	2,10
0,60	14	0,797	107,60	135,01	5,38	6,75
0,80	21	0,743	150,53	202,51	7,53	10,13
1,00	28	0,740	199,75	270,02	9,99	13,50
1,20	33	0,686	218,39	318,23	10,92	15,91
1,40	40	0,633	244,12	385,74	12,21	19,29

	2 2 2	3170703.6		m:				G 00 11	Norm	- · ·
1	Prof. Strato	NPDM	Rd	Tipo	Peso unita'	Peso unita'	Tensione	Coeff. di	NSPT	Descrizione
	(m)		(Kg/cm ²)		di volume	di volume	efficace	correlaz. con		
					(t/m^3)	saturo	(Kg/cm ²)	Nspt		
						(t/m^3)				
	0,4	5	52,53	Incoerente	1,63	1,9	0,03	1,47	7,35	sabbia limosa
	1	21	202,51	Incoerente	2,14	2,05	0,13	1,47	30,87	ghiaia sabbiosa
	1,4	36,5	351,98	Incoerente	2,25	2,16	0,24	1,47	53,66	ghiaia debolmente
										sabbiosa

STIMA PARAMETRI GEOTECNICI PROVA Nr.2

TERRENI INCOERENTI

Densita' relativa

Bensita Tetativa								
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa			
		(m)			(%)			
Strato (1)	7,35	0.00-0,40	7,35	Meyerhof 1957	66,52			
sabbia limosa								
Strato (2)	30,87	0,40-1,00	30,87	Meyerhof 1957	100			
ghiaia sabbiosa				-				
Strato (3)	53,66	1,00-1,40	53,66	Meyerhof 1957	100			
ghiaia debolmente				-				
sabbiosa								

Angolo di resistenza al taglio

Aligolo di l'esisteliza al					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1	7,35	0.00-0,40	7,35	Meyerhof (1956)	22,1
sabbia limos	a				
Strato (2	2) 30,87	0,40-1,00	30,87	Meyerhof (1956)	28,82
ghiaia sabbios	a				
Strato (3	53,66	1,00-1,40	53,66	Mitchell & Katti (1981)	>38
ghiaia debolment	e				
sabbios	a				

Modulo di Young

modulo di Toding					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo di Young
		(m)			(Kg/cm ²)
Strato (1)	7,35	0.00-0,40	7,35	Schultze-Menzenbach	84,06
sabbia limosa				Sabbia limosa	
Strato (2)	30,87	0,40-1,00	30,87	Schultze-Menzenbach	208,71
ghiaia sabbiosa				Sabbia limosa	
Strato (3)	53,66	1,00-1,40	53,66	Schultze-Menzenbach	508,23
ghiaia debolmente				Ghiaia e Sabbia	
sabbiosa					

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo Edometrico
		(m)			(Kg/cm ²)
Strato (1)	7,35	0.00-0,40	7,35	Menzenbach e Malcev	70,78
sabbia limosa				(Sabbia media)	
Strato (2)	30,87	0,40-1,00	30,87	Menzenbach e Malcev	175,68
ghiaia sabbiosa				(Sabbia media)	
Strato (3)	53,66	1,00-1,40	53,66	Menzenbach e Malcev	277,32
ghiaia debolmente				(Sabbia media)	
sabbiosa					

Classificazione AGI

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione AGI
		(m)			
Strato (1)	7,35	0.00-0,40	7,35	Classificazione A.G.I	POCO ADDENSATO
sabbia limosa					
Strato (2)	30,87	0,40-1,00	30,87	Classificazione A.G.I	ADDENSATO
ghiaia sabbiosa					
Strato (3)	53,66	1,00-1,40	53,66	Classificazione A.G.I	MOLTO ADDENSATO
ghiaia debolmente	,		•		
sabbiosa					

Peso unita' di volume

1 ess unita di votanie								
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita' di Volume			
		(m)			(t/m³)			
Strato (1)	7,35	0.00-0,40	7,35	Terzaghi-Peck 1948	1,44			
sabbia limosa								
Strato (2)	30,87	0,40-1,00	30,87	Terzaghi-Peck 1948	1,71			
ghiaia sabbiosa								
Strato (3)	53,66	1,00-1,40	53,66	Terzaghi-Peck 1948	1,87			
ghiaia debolmente								
sabbiosa								

Peso	unita'	di	vo	lume	saturo	

Descrizione	Descrizione NSPT		N. Calcolo	Correlazione	Peso Unita' Volume Saturo (t/m³)
Strato (1)	7,35	0.00-0,40	7,35	Terzaghi-Peck 1948	
sabbia limosa					
Strato (2)	30,87	0,40-1,00	30,87	Terzaghi-Peck 1948	2,06
ghiaia sabbiosa					
Strato (3)	53,66	1,00-1,40	53,66	Terzaghi-Peck 1948	2,16
ghiaia debolmente					
sabbiosa					

Modulo di Poisson

niodale al I disself									
Descrizione	NSPT Prof. Strato N. Calcolo		N. Calcolo	Correlazione	Poisson				
		(m)							
Strato (1)	7,35	0.00-0,40	7,35	(A.G.I.)	0,34				
sabbia limosa									
Strato (2)	30,87	0,40-1,00	30,87	(A.G.I.)	0,29				
ghiaia sabbiosa									
Strato (3)	53,66	1,00-1,40	53,66	(A.G.I.)	0,25				
ghiaia debolmente									
sabbiosa									

Modulo di deformazione a taglio dinamico

Wiodulo di delolillazione					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm ²)
Strato (1)	7,35	0.00-0,40	7,35	Ohsaki (Sabbie pulite)	423,86
sabbia limosa					
Strato (2)	30,87	0,40-1,00	30,87	Ohsaki (Sabbie pulite)	1633,34
ghiaia sabbiosa					
Strato (3)	53,66	1,00-1,40	53,66	Ohsaki (Sabbie pulite)	2746,53
ghiaia debolmente					
sabbiosa					

Velocita' onde di taglio

Velocità onde di tagno								
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Velocita' onde di taglio			
		(m)			(m/s)			
Strato (1)	7,35	0.00-0,40	7,35	Ohta & Goto (1978)	70,81			
sabbia limosa				Limi				
Strato (2)	30,87	0,40-1,00	30,87	Ohta & Goto (1978)	115,59			
ghiaia sabbiosa				Limi				
Strato (3)	53,66	1,00-1,40	53,66	Ohta & Goto (1978)	141,13			
ghiaia debolmente				Limi				
sabbiosa								

Coefficiente spinta a Riposo

Descrizione	NSPT Prof. Strato		N. Calcolo	Correlazione	K0
		(m)			
Strato (1)	7,35	0.00-0,40	7,35	Navfac 1971-1982	1,52
sabbia limosa					
Strato (2)	30,87	0,40-1,00	30,87	Navfac 1971-1982	5,73
ghiaia sabbiosa					
Strato (3)	53,66	1,00-1,40	53,66	Navfac 1971-1982	8,73
ghiaia debolmente					
sabbiosa					

Qc (Resistenza punta Penetrometro Statico)

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc
		(m)			(Kg/cm ²)
Strato (1)	7,35	0.00-0,40	7,35	Robertson 1983	14,70
sabbia limosa					
Strato (2)	30,87	0,40-1,00	30,87	Robertson 1983	61,74
ghiaia sabbiosa					
Strato (3)	53,66	1,00-1,40	53,66	Robertson 1983	107,32
ghiaia debolmente					
sabbiosa					

PROVA ... Nr.3

Strumento utilizzato... Prova eseguita in data Profondita' prova Falda non rilevata DPSH TG 63-200 PAGANI 22/04/2024 3,60 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres. ammissibile	Pres. ammissibile
		riduzione sonda Chi	ridotta	(Kg/cm ²)	con riduzione	Herminier -
			(Kg/cm ²)		Herminier -	Olandesi
			· · · ·		Olandesi	(Kg/cm ²)
					(Kg/cm ²)	, ,
0,20	8	0,855	71,84	84,06	3,59	4,20
0,40	7	0,851	62,58	73,55	3,13	3,68
0,60	4	0,847	32,67	38,57	1,63	1,93
0,80	15	0,793	114,76	144,65	5,74	7,23
1,00	13	0,790	99,01	125,36	4,95	6,27
1,20	17	0,786	128,90	163,94	6,44	8,20
1,40	18	0,783	135,89	173,58	6,79	8,68
1,60	21	0,730	136,52	187,13	6,83	9,36
1,80	20	0,776	138,35	178,22	6,92	8,91
2,00	15	0,773	103,35	133,66	5,17	6,68
2,20	19	0,770	130,39	169,31	6,52	8,47
2,40	10	0,817	72,81	89,11	3,64	4,46
2,60	12	0,814	80,92	99,38	4,05	4,97
2,80	12	0,811	80,64		4,03	4,97
3,00	23	0,709	134,99	190,48	6,75	9,52
3,20	30	0,706	175,41	248,45	8,77	12,42
3,40	34	0,653	183,98	281,58	9,20	14,08
3,60	38	0,651	191,32	293,95	9,57	14,70

Prof. Strato (m)	NPDM	Rd (Kg/cm²)	Tipo	Peso unita' di volume (t/m³)	Peso unita' di volume saturo (t/m³)	Tensione efficace (Kg/cm²)	Coeff. di correlaz. con Nspt	NSPT	Descrizione
0,6	6,33	65,39	Incoerente	1,71	1,91	0,05	1,47	9,31	sabbia limosa
2,2	17,25	159,48	Incoerente	2,08	2,01	0,27	1,47	25,36	ghiaia sabbiosa
2,8	11,33	95,96	Incoerente	1,92	1,96	0,49	1,47	16,66	sabbia ghiaiosa

3,6	31,25	253,62	Incoerente	2,22	2,14	0,64	1,47	45,94	ghiaia debolmente
									sabbiosa

STIMA PARAMETRI GEOTECNICI PROVA Nr.3

TERRENI INCOERENTI

Densita' relativa					
Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Densita' relativa (%)
Strato (1) sabbia limosa	9,31	0.00-0,60	9,31	Meyerhof 1957	73,92
Strato (2) ghiaia sabbiosa	25,36	0,60-2,20	25,36	Meyerhof 1957	100
Strato (3) sabbia ghiaiosa	16,66	2,20-2,80	16,66	Meyerhof 1957	78,48
Strato (4) ghiaia debolmente sabbiosa	45,94	2,80-3,60	45,94	Meyerhof 1957	100

Angolo di resistenza al ta	glio					
Descrizione	NSPT	Prof. Strato N. Calcolo		Correlazione	Angolo d'attrito	
		(m)			(°)	
Strato (1)	9,31	0.00-0,60	9,31	Meyerhof (1956)	22,66	
sabbia limosa						
Strato (2)	25,36	0,60-2,20	25,36	Meyerhof (1956)	27,25	
ghiaia sabbiosa						
Strato (3)	16,66	2,20-2,80	16,66	Meyerhof (1956)	24,76	
sabbia ghiaiosa						
Strato (4)	45,94	2,80-3,60	45,94	Mitchell & Katti (1981)	35-38	
ghiaia debolmente						
sabbiosa						

Modulo di Young					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo di Young
		(m)			(Kg/cm ²)
Strato (1)	9,31	0.00-0,60	9,31	Schultze-Menzenbach	94,44
sabbia limosa				Sabbia limosa	
Strato (2)	25,36	0,60-2,20	25,36	Schultze-Menzenbach	179,51
ghiaia sabbiosa				Sabbia limosa	
Strato (3)	16,66	2,20-2,80	16,66	Schultze-Menzenbach	133,40
sabbia ghiaiosa				Sabbia limosa	
Strato (4)	45,94	2,80-3,60	45,94	Schultze-Menzenbach	427,17
ghiaia debolmente				Ghiaia e Sabbia	
sabbiosa					

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Modulo Edometrico (Kg/cm²)
Strato (1)	9,31	0.00-0,60	9,31	Menzenbach e Malcev	79,52
sabbia limosa				(Sabbia media)	
Strato (2)	25,36	0,60-2,20	25,36	Menzenbach e Malcev	151,11
ghiaia sabbiosa				(Sabbia media)	
Strato (3)	16,66	2,20-2,80	16,66	Menzenbach e Malcev	112,30
sabbia ghiaiosa				(Sabbia media)	
Strato (4)	45,94	2,80-3,60	45,94	Menzenbach e Malcev	242,89
ghiaia debolmente				(Sabbia media)	
sabbiosa					

Classificazione AGI Descrizione	NSPT	Prof. Strato	N. C.11.	C1	Classificazione AGI
Descrizione	NSPI	Prof. Strato	N. Calcolo	Correlazione	Classificazione AGI
		(m)			
Strato (1)	9,31	0.00-0,60	9,31	Classificazione A.G.I	POCO ADDENSATO
sabbia limosa					
Strato (2)	25,36	0,60-2,20	25,36	Classificazione A.G.I	MODERATAMENTE
ghiaia sabbiosa					ADDENSATO
Strato (3)	16,66	2,20-2,80	16,66	Classificazione A.G.I	MODERATAMENTE
sabbia ghiaiosa					ADDENSATO
Strato (4)	45,94	2,80-3,60	45,94	Classificazione A.G.I	ADDENSATO
ghiaia debolmente					
sabbiosa					

-				
Daco	unita'	41	370	nma

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unita' di Volume (t/m³)
Strato (1) sabbia limosa		0.00-0,60	9,31	Terzaghi-Peck 1948	1,47
Strato (2) ghiaia sabbiosa		0,60-2,20	25,36	Terzaghi-Peck 1948	1,65
Strato (3) sabbia ghiaiosa		2,20-2,80	16,66	Terzaghi-Peck 1948	1,56
Strato (4) ghiaia debolmente sabbiosa		2,80-3,60	45,94	Terzaghi-Peck 1948	1,83

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unita' Volume Saturo (t/m³)
Strato (1) sabbia limosa		0.00-0,60	9,31	Terzaghi-Peck 1948	1,91
Strato (2) ghiaia sabbiosa		0,60-2,20	25,36	Terzaghi-Peck 1948	2,03
Strato (3) sabbia ghiaiosa		2,20-2,80	16,66	Terzaghi-Peck 1948	1,97
Strato (4) ghiaia debolmente sabbiosa		2,80-3,60	45,94	Terzaghi-Peck 1948	2,14

Modulo di Poisson

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Poisson
		(m)			
Strato (1)	9,31	0.00-0,60	9,31	(A.G.I.)	0,34
sabbia limosa					
Strato (2)	25,36	0,60-2,20	25,36	(A.G.I.)	0,3
ghiaia sabbiosa					
Strato (3)	16,66	2,20-2,80	16,66	(A.G.I.)	0,32
sabbia ghiaiosa					
Strato (4)	45,94	2,80-3,60	45,94	(A.G.I.)	0,26
ghiaia debolmente					
sabbiosa					

Modulo di deformazione a taglio dinamico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm ²)
Strato (1)	9,31	0.00-0,60	9,31	Ohsaki (Sabbie pulite)	529,33
sabbia limosa					
Strato (2)	25,36	0,60-2,20	25,36	Ohsaki (Sabbie pulite)	1357,73
ghiaia sabbiosa					
Strato (3)	16,66	2,20-2,80	16,66	Ohsaki (Sabbie pulite)	914,72
sabbia ghiaiosa					
Strato (4)	45,94	2,80-3,60	45,94	Ohsaki (Sabbie pulite)	2373,41
ghiaia debolmente					
sabbiosa					

Velocita' onde di taglio

velocità cide di taglio						
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Velocita' onde di taglio	
		(m)			(m/s)	
Strato (1)	9,31	0.00-0,60	9,31	Ohta & Goto (1978)	79,77	
sabbia limosa				Limi		
Strato (2)	25,36	0,60-2,20	25,36	Ohta & Goto (1978)	127,71	
ghiaia sabbiosa				Limi		
Strato (3)	16,66	2,20-2,80	16,66	Ohta & Goto (1978)	132,82	
sabbia ghiaiosa				Limi		
Strato (4)	45,94	2,80-3,60	45,94	Ohta & Goto (1978)	166,03	
ghiaia debolmente				Limi		
sabbiosa						

Coefficiente spinta a Riposo

Coefficient spinia witaposo						
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	K0	
		(m)				
Strato (1)	9,31	0.00-0,60	9,31	Navfac 1971-1982	1,95	
sabbia limosa						

Dynamic probing 2024

Strato (2) ghiaia sabbiosa	-	0,60-2,20	25,36	Navfac 1971-1982	4,93
Strato (3) sabbia ghiaiosa		2,20-2,80	16,66	Navfac 1971-1982	3,44
Strato (4) ghiaia debolmente sabbiosa	,	2,80-3,60	45,94	Navfac 1971-1982	7,63

Qc (Resistenza punta Penetrometro Statico)

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc
		(m)			(Kg/cm ²)
Strato (1)	9,31	0.00-0,60	9,31	Robertson 1983	18,62
sabbia limosa					
Strato (2)	25,36	0,60-2,20	25,36	Robertson 1983	50,72
ghiaia sabbiosa					
Strato (3)	16,66	2,20-2,80	16,66	Robertson 1983	33,32
sabbia ghiaiosa					
Strato (4)	45,94	2,80-3,60	45,94	Robertson 1983	91,88
ghiaia debolmente					
sabbiosa					

PROVA ... Nr.4

Strumento utilizzato... Prova eseguita in data Profondita' prova Falda non rilevata DPSH TG 63-200 PAGANI 22/04/2024 4,00 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita'(m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres. ammissibile	Pres. ammissibile
	1	riduzione sonda Chi	ridotta	(Kg/cm ²)	con riduzione	Herminier -
			(Kg/cm ²)	(8)	Herminier -	Olandesi
			()		Olandesi	(Kg/cm ²)
					(Kg/cm ²)	(5)
0,20	25	0,755	198,23	262,68	9,91	13,13
0,40	22	0,751	173,55	231,16	8,68	11,56
0,60	9	0,847	73,51	86,79	3,68	4,34
0,80	5	0,843	40,66	48,22	2,03	2,41
1,00	7	0,840	56,69	67,50	2,83	3,38
1,20	6	0,836	48,39	57,86	2,42	2,89
1,40	4	0,833	32,13	38,57	1,61	1,93
1,60	4	0,830	29,57	35,64	1,48	1,78
1,80	3	0,826	22,09	26,73	1,10	1,34
2,00	3	0,823	22,01	26,73	1,10	1,34
2,20	2	0,820	14,62	17,82	0,73	0,89
2,40	2	0,817	14,56	17,82	0,73	0,89
2,60	3	0,814	20,23	24,85	1,01	1,24
2,80	2	0,811	13,44	16,56	0,67	0,83
3,00	2	0,809	13,39	16,56	0,67	0,83
3,20	3	0,806	20,03	24,85	1,00	1,24
3,40	19	0,753	118,55	157,35	5,93	7,87
3,60	25	0,701	135,54	193,39	6,78	9,67
3,80	34	0,648	170,54	263,01	8,53	13,15
4,00	42	0,596	193,64	324,89	9,68	16,24

Prof. Strato (m)	NPDM	Rd (Kg/cm²)	Tipo	Peso unita' di volume (t/m³)	Peso unita' di volume saturo (t/m³)	Tensione efficace (Kg/cm²)	Coeff. di correlaz. con Nspt	NSPT	Descrizione
0,4	23,5	246,92	Incoerente	2,17	2,07	0.04	1,47	34,55	ghiaia sabbiosa
1	7	67,5	Incoerente			0,14	, .	,	sabbia limosa
3,2	3,09	27,64	Incoerente	1,52	1,88	0,36	1,47	4,54	limo sabbioso
3,6	22	175,37	Incoerente	2,16	2,06	0,57	1,47	32,34	ghiaia sabbiosa
4	38	293,95	Incoerente	2,26	2,16	0,66	1,47	55,86	ghiaia debolmente
									sabbiosa

STIMA PARAMETRI GEOTECNICI PROVA Nr.4

TERRENI INCOERENTI

Densita'	re	lativa
Densita	10	ıaıı va

Densita Telativa					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)	34,55	0.00-0,40	34,55	Meyerhof 1957	100
ghiaia sabbiosa					
Strato (2)	10,29	0,40-1,00	10,29	Meyerhof 1957	73,54
sabbia limosa				-	
Strato (3)	4,54	1,00-3,20	4,54	Meyerhof 1957	43,49
limo sabbioso				-	
Strato (4)	32,34	3,20-3,60	32,34	Meyerhof 1957	100
ghiaia sabbiosa				-	
Strato (5)	55,86	3,60-4,00	55,86	Meyerhof 1957	100
ghiaia debolmente				-	
sabbiosa					

Angolo di resistenza al taglio

	gno				
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1)	34,55	0.00-0,40	34,55	Meyerhof (1956)	29,87
ghiaia sabbiosa					
Strato (2)	10,29	0,40-1,00	10,29	Meyerhof (1956)	22,94
sabbia limosa					
Strato (3)	4,54	1,00-3,20	4,54	Meyerhof (1956)	21,3
limo sabbioso					
Strato (4)	32,34	3,20-3,60	32,34	Meyerhof (1956)	29,24
ghiaia sabbiosa					
Strato (5)	55,86	3,60-4,00	55,86	Mitchell & Katti (1981)	>38
ghiaia debolmente					
sabbiosa					
	Strato (1) ghiaia sabbiosa Strato (2) sabbia limosa Strato (3) limo sabbioso Strato (4) ghiaia sabbiosa Strato (5) ghiaia debolmente	Strato (1) 34,55 ghiaia sabbiosa Strato (2) 10,29 sabbia limosa Strato (3) 4,54 limo sabbioso Strato (4) 32,34 ghiaia sabbiosa Strato (5) 55,86 ghiaid debolmente Strato (5)	Descrizione	Descrizione	Descrizione

Modulo di Young

Modulo di Toulig					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo di Young
		(m)			(Kg/cm ²)
Strato (1)	34,55	0.00-0,40	34,55	Schultze-Menzenbach	228,21
ghiaia sabbiosa				Sabbia limosa	
Strato (2)	10,29	0,40-1,00	10,29	Schultze-Menzenbach	99,64
sabbia limosa				Sabbia limosa	
Strato (3)	4,54	1,00-3,20	4,54	Schultze-Menzenbach	69,16
limo sabbioso				Sabbia limosa	
Strato (4)	32,34	3,20-3,60	32,34	Schultze-Menzenbach	284,37
ghiaia sabbiosa				Ghiaia e Sabbia	
Strato (5)	55,86	3,60-4,00	55,86	Schultze-Menzenbach	531,33
ghiaia debolmente				Ghiaia e Sabbia	
sabbiosa					

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo Edometrico
		(m)			(Kg/cm ²)
Strato (1)	34,55	0.00-0,40	34,55	Menzenbach e Malcev	192,09
ghiaia sabbiosa				(Sabbia media)	
Strato (2)	10,29	0,40-1,00	10,29	Menzenbach e Malcev	83,89
sabbia limosa				(Sabbia media)	
Strato (3)	4,54	1,00-3,20	4,54	Menzenbach e Malcev	58,25
limo sabbioso				(Sabbia media)	

Strato (4)	32,34	3,20-3,60	32,34	Menzenbach e Malcev	182,24
ghiaia sabbiosa				(Sabbia media)	
Strato (5)	55,86	3,60-4,00	55,86	Menzenbach e Malcev	287,14
ghiaia debolmente				(Sabbia media)	
sabbiosa					

Classificazione AGI

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Classificazione AGI
Strato (1) ghiaia sabbiosa		0.00-0,40	34,55	Classificazione A.G.I	ADDENSATO
Strato (2) sabbia limosa	-	0,40-1,00	10,29	Classificazione A.G.I	MODERATAMENTE ADDENSATO
Strato (3) limo sabbioso	-	1,00-3,20	4,54	Classificazione A.G.I	POCO ADDENSATO
Strato (4) ghiaia sabbiosa		3,20-3,60	32,34	Classificazione A.G.I	ADDENSATO
Strato (5) ghiaia debolmente sabbiosa	,	3,60-4,00	55,86	Classificazione A.G.I	MOLTO ADDENSATO

Peso unita' di volume

eso unità di volune							
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita' di Volume		
		(m)			(t/m^3)		
Strato (1)	34,55	0.00-0,40	34,55	Terzaghi-Peck 1948	1,74		
ghiaia sabbiosa							
Strato (2)	10,29	0,40-1,00	10,29	Terzaghi-Peck 1948	1,48		
sabbia limosa							
Strato (3)	4,54	1,00-3,20	4,54	Terzaghi-Peck 1948	1,41		
limo sabbioso							
Strato (4)	32,34	3,20-3,60	32,34	Terzaghi-Peck 1948	1,72		
ghiaia sabbiosa							
Strato (5)	55,86	3,60-4,00	55,86	Terzaghi-Peck 1948	1,89		
ghiaia debolmente							
sabbiosa							

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita' Volume
		(m)			Saturo
					(t/m³)
Strato (1)	34,55	0.00-0,40	34,55	Terzaghi-Peck 1948	2,08
ghiaia sabbiosa					
Strato (2)	10,29	0,40-1,00	10,29	Terzaghi-Peck 1948	1,92
sabbia limosa					
Strato (3)	4,54	1,00-3,20	4,54	Terzaghi-Peck 1948	1,88
limo sabbioso					
Strato (4)	32,34	3,20-3,60	32,34	Terzaghi-Peck 1948	2,07
ghiaia sabbiosa					
Strato (5)	55,86	3,60-4,00	55,86	Terzaghi-Peck 1948	2,17
ghiaia debolmente					
sabbiosa					

Modulo di Poisson

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Poisson
		(m)			
Strato (1)	34,55	0.00-0,40	34,55	(A.G.I.)	0,29
ghiaia sabbiosa					
Strato (2)	10,29	0,40-1,00	10,29	(A.G.I.)	0,33
sabbia limosa					
Strato (3)	4,54	1,00-3,20	4,54	(A.G.I.)	0,34
limo sabbioso					
Strato (4)	32,34	3,20-3,60	32,34	(A.G.I.)	0,29
ghiaia sabbiosa					
Strato (5)	55,86	3,60-4,00	55,86	(A.G.I.)	0,24
ghiaia debolmente					
sabbiosa					

Modulo di deformazione a taglio dinamico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm ²)
Strato (1)	34,55	0.00-0,40	34,55	Ohsaki (Sabbie pulite)	1815,74

ghiaia sabbiosa			_		
Strato (2)	10,29	0,40-1,00	10,29	Ohsaki (Sabbie pulite)	581,55
sabbia limosa					
Strato (3)	4,54	1,00-3,20	4,54	Ohsaki (Sabbie pulite)	269,49
limo sabbioso					
Strato (4)	32,34	3,20-3,60	32,34	Ohsaki (Sabbie pulite)	1706,35
ghiaia sabbiosa					
Strato (5)	55,86	3,60-4,00	55,86	Ohsaki (Sabbie pulite)	2852,25
ghiaia debolmente					
sabbiosa					

Velocita' onde di taglio

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Velocita' onde di taglio (m/s)
Strato (1)	34,55	0.00-0,40	34,55	Ohta & Goto (1978)	92,55
ghiaia sabbiosa	·			Limi	
Strato (2)	10,29	0,40-1,00	10,29	Ohta & Goto (1978)	95,58
sabbia limosa				Limi	
Strato (3)	4,54	1,00-3,20	4,54	Ohta & Goto (1978)	102,56
limo sabbioso				Limi	
Strato (4)	32,34	3,20-3,60	32,34	Ohta & Goto (1978)	158,08
ghiaia sabbiosa				Limi	
Strato (5)	55,86	3,60-4,00	55,86	Ohta & Goto (1978)	177,53
ghiaia debolmente				Limi	
sabbiosa					

Coefficiente spinta a Riposo

Coefficiente spinta a Riposo								
Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	K0			
Strato (1) ghiaia sabbiosa		0.00-0,40	34,55	Navfac 1971-1982	6,21			
Strato (2) sabbia limosa		0,40-1,00	10,29	Navfac 1971-1982	2,16			
Strato (3) limo sabbioso	-	1,00-3,20	4,54	Navfac 1971-1982	0,88			
Strato (4) ghiaia sabbiosa	-	3,20-3,60	32,34	Navfac 1971-1982	5,93			
Strato (5) ghiaia debolmente sabbiosa	·	3,60-4,00	55,86	Navfac 1971-1982	9,10			

Qc (Resistenza punta Penetrometro Statico)

Descrizione	Descrizione NSPT		N. Calcolo	Correlazione	Qc
		(m)			(Kg/cm ²)
Strato (1)	34,55	0.00-0,40	34,55	Robertson 1983	69,10
ghiaia sabbiosa	·				
Strato (2)	10,29	0,40-1,00	10,29	Robertson 1983	20,58
sabbia limosa					
Strato (3)	4,54	1,00-3,20	4,54	Robertson 1983	9,08
limo sabbioso					
Strato (4)	32,34	3,20-3,60	32,34	Robertson 1983	64,68
ghiaia sabbiosa					
Strato (5)	55,86	3,60-4,00	55,86	Robertson 1983	111,72
ghiaia debolmente					
sabbiosa					

PROVA ... Nr.5

Strumento utilizzato... Prova eseguita in data Profondita' prova Falda non rilevata DPSH TG 63-200 PAGANI 22/04/2024 3,60 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres. ammissibile	Pres. ammissibile
	1	riduzione sonda Chi	ridotta	(Kg/cm ²)	con riduzione	Herminier -
			(Kg/cm ²)	(5)	Herminier -	Olandesi
			(8)		Olandesi	(Kg/cm ²)
					(Kg/cm ²)	(8)
0,20	10	0,855	89,80	105,07	4,49	5,25
0,40	15	0,801	126,21	157,61	6,31	7,88
0,60	25	0,747	180,09	241,09	9,00	12,05
0,80	10	0,843	81,33	96,43	4,07	4,82
1,00	11	0,840	89,08	106,08	4,45	5,30
1,20	9	0,836	72,58	86,79	3,63	4,34
1,40	8	0,833	64,25	77,15	3,21	3,86
1,60	6	0,830	44,35	53,47	2,22	2,67
1,80	5	0,826	36,82	44,55	1,84	2,23
2,00	6	0,823	44,01	53,47	2,20	2,67
2,20	5	0,820	36,54	44,55	1,83	2,23
2,40	4	0,817	29,13	35,64	1,46	1,78
2,60	5	0,814	33,72	41,41	1,69	2,07
2,80	18	0,761	113,51	149,07	5,68	7,45
3,00	27	0,709	158,46	223,61	7,92	11,18
3,20	34	0,656	184,72	281,58	9,24	14,08
3,40	30	0,703	174,76	248,45	8,74	12,42
3,60	42	0,601	195,22	324,89	9,76	16,24

	Prof. Strato	NPDM	Rd	Tipo	Peso unita'	Peso unita'	Tensione	Coeff. di	NSPT	Descrizione
	(m)		(Kg/cm ²)		di volume	di volume	efficace	correlaz. con		
					(t/m^3)	saturo	(Kg/cm ²)	Nspt		
						(t/m^3)				
Ī	0,6	16,67	167,92	Incoerente	2,07	2,01	0,06	1,47	24,5	ghiaia sabbiosa
	1,4	9,5	91,61	Incoerente	1,85	1,94	0,2	1,47	13,97	sabbia ghiaiosa
	2,6	5,17	45,51	Incoerente	1,64	1,9	0,37	1,47	7,6	sabbia e limo

3	22,5	186,34	Incoerente	2,16	2,06	0,51	1,47	33,08	ghiaia sabbiosa
3,6	35,33	284,97	Incoerente	2,24	2,15	0,62	1,47	51,94	ghiaia debolmente
									sabbiosa

STIMA PARAMETRI GEOTECNICI PROVA Nr.5

TERRENI INCOERENTI

Densita'	re	lati	va	
		•	•	

Delisita Telativa	1				
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)	24,50	0.00-0,60	24,50	Meyerhof 1957	100
ghiaia sabbiosa					
Strato (2)	13,97	0,60-1,40	13,97	Meyerhof 1957	82,82
sabbia ghiaiosa					
Strato (3)	7,60	1,40-2,60	7,60	Meyerhof 1957	55,95
sabbia e limo					
Strato (4)	33,08	2,60-3,00	33,08	Meyerhof 1957	100
ghiaia sabbiosa					
Strato (5)	51,94	3,00-3,60	51,94	Meyerhof 1957	100
ghiaia debolmente					
sabbiosa					

Angolo di resistenza al taglio

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Angolo d'attrito (°)
Strato (1) ghiaia sabbiosa	-	0.00-0,60	24,50	Meyerhof (1956)	27
Strato (2) sabbia ghiaiosa	-	0,60-1,40	13,97	Meyerhof (1956)	23,99
Strato (3) sabbia e limo	-	1,40-2,60	7,60	Meyerhof (1956)	22,17
Strato (4) ghiaia sabbiosa	-	2,60-3,00	33,08	Meyerhof (1956)	29,45
Strato (5) ghiaia debolmente sabbiosa	,	3,00-3,60	51,94	Mitchell & Katti (1981)	>38

Modulo di Young

Modulo di Toulig					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo di Young
		(m)			(Kg/cm ²)
Strato (1)	24,50	0.00-0,60	24,50	Schultze-Menzenbach	174,95
ghiaia sabbiosa				Sabbia limosa	
Strato (2)	13,97	0,60-1,40	13,97	Schultze-Menzenbach	119,14
sabbia ghiaiosa				Sabbia limosa	
Strato (3)	7,60	1,40-2,60	7,60	Schultze-Menzenbach	85,38
sabbia e limo				Sabbia limosa	
Strato (4)	33,08	2,60-3,00	33,08	Schultze-Menzenbach	220,42
ghiaia sabbiosa				Sabbia limosa	
Strato (5)	51,94	3,00-3,60	51,94	Schultze-Menzenbach	490,17
ghiaia debolmente				Ghiaia e Sabbia	
sabbiosa					

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo Edometrico
		(m)			(Kg/cm ²)
Strato (1)	24,50	0.00-0,60	24,50	Menzenbach e Malcev	147,27
ghiaia sabbiosa				(Sabbia media)	
Strato (2)	13,97	0,60-1,40	13,97	Menzenbach e Malcev	100,31
sabbia ghiaiosa				(Sabbia media)	
Strato (3)	7,60	1,40-2,60	7,60	Menzenbach e Malcev	71,90
sabbia e limo				(Sabbia media)	
Strato (4)	33,08	2,60-3,00	33,08	Menzenbach e Malcev	185,54
ghiaia sabbiosa				(Sabbia media)	
Strato (5)	51,94	3,00-3,60	51,94	Menzenbach e Malcev	269,65
ghiaia debolmente				(Sabbia media)	
sabbiosa					

~ 4	. ~		. ~ -
(ˈlas	ecition	2710n	e AGI

Classificazione 11G1							
Descrizione	NSPT	Prof. Strato	N. Calcolo	N. Calcolo Correlazione			
		(m)					
Strato (1)	24,50	0.00-0,60	24,50	Classificazione A.G.I	MODERATAMENTE		
ghiaia sabbiosa					ADDENSATO		
Strato (2)	13,97	0,60-1,40	13,97	Classificazione A.G.I	MODERATAMENTE		
sabbia ghiaiosa					ADDENSATO		
Strato (3)	7,60	1,40-2,60	7,60	Classificazione A.G.I	POCO ADDENSATO		
sabbia e limo							
Strato (4)	33,08	2,60-3,00	33,08	Classificazione A.G.I	ADDENSATO		
ghiaia sabbiosa							
Strato (5)	51,94	3,00-3,60	51,94	Classificazione A.G.I	MOLTO ADDENSATO		
ghiaia debolmente							
sabbiosa							

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unita' di Volume (t/m³)
Strato (1) ghiaia sabbiosa	-	0.00-0,60	24,50	Terzaghi-Peck 1948	1,64
Strato (2) sabbia ghiaiosa		0,60-1,40	13,97	Terzaghi-Peck 1948	1,53
Strato (3) sabbia e limo		1,40-2,60	7,60	Terzaghi-Peck 1948	1,45
Strato (4) ghiaia sabbiosa	·	2,60-3,00	33,08	Terzaghi-Peck 1948	1,73
Strato (5) ghiaia debolmente sabbiosa	·	3,00-3,60	51,94	Terzaghi-Peck 1948	1,86

Peso unita' di volume saturo

Descrizione NSPT Prof. Strato N. Calcolo Correlazione Peso Uni								
Descrizione	Descrizione NSPT		Prof. Strato N. Calcolo		Peso Unita' Volume			
		(m)			Saturo			
					(t/m^3)			
Strato (1)	24,50	0.00-0,60	24,50	Terzaghi-Peck 1948	2,02			
ghiaia sabbiosa								
Strato (2)	13,97	0,60-1,40	13,97	Terzaghi-Peck 1948	1,95			
sabbia ghiaiosa								
Strato (3)	7,60	1,40-2,60	7,60	Terzaghi-Peck 1948	1,90			
sabbia e limo								
Strato (4)	33,08	2,60-3,00	33,08	Terzaghi-Peck 1948	2,07			
ghiaia sabbiosa								
Strato (5)	51,94	3,00-3,60	51,94	Terzaghi-Peck 1948	2,16			
ghiaia debolmente								
sabbiosa								

Modulo di Poisson

Descrizione NSPT Prof. Strato N. Calcolo Correlazione Poisson							
Descrizione	Descrizione NSPT		Prof. Strato N. Calcolo		Poisson		
		(m)					
Strato (1)	24,50	0.00-0,60	24,50	(A.G.I.)	0,31		
ghiaia sabbiosa							
Strato (2)	13,97	0,60-1,40	13,97	(A.G.I.)	0,33		
sabbia ghiaiosa				· · ·			
Strato (3)	7,60	1,40-2,60	7,60	(A.G.I.)	0,34		
sabbia e limo							
Strato (4)	33,08	2,60-3,00	33,08	(A.G.I.)	0,29		
ghiaia sabbiosa							
Strato (5)	51,94	3,00-3,60	51,94	(A.G.I.)	0,25		
ghiaia debolmente							
sabbiosa							

Modulo di deformazione a taglio dinamico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm ²)
Strato (1) ghiaia sabbiosa		0.00-0,60	24,50	Ohsaki (Sabbie pulite)	1314,41
Strato (2) sabbia ghiaiosa		0,60-1,40	13,97	Ohsaki (Sabbie pulite)	775,17
Strato (3) sabbia e limo		1,40-2,60	7,60	Ohsaki (Sabbie pulite)	437,40
Strato (4)	33,08	2,60-3,00	33,08	Ohsaki (Sabbie pulite)	1743,03

ghiaia sabbiosa					
Strato (5)	51,94	3,00-3,60	51,94	Ohsaki (Sabbie pulite)	2663,70
ghiaia debolmente					
sabbiosa					

Velocita' onde di taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Velocita' onde di taglio
		(m)			(m/s)
Strato (1)	24,50	0.00-0,60	24,50	Ohta & Goto (1978)	94,3
ghiaia sabbiosa				Limi	
Strato (2)	13,97	0,60-1,40	13,97	Ohta & Goto (1978)	107,95
sabbia ghiaiosa				Limi	
Strato (3)	7,60	1,40-2,60	7,60	Ohta & Goto (1978)	111,07
sabbia e limo				Limi	
Strato (4)	33,08	2,60-3,00	33,08	Ohta & Goto (1978)	152,86
ghiaia sabbiosa				Limi	
Strato (5)	51,94	3,00-3,60	51,94	Ohta & Goto (1978)	170,6
ghiaia debolmente				Limi	
sabbiosa					

Coefficiente spinta a Riposo

Descrizione	Descrizione NSPT		N. Calcolo	Correlazione	K0
Strato (1) ghiaia sabbiosa		0.00-0,60	24,50	Navfac 1971-1982	4,80
Strato (2) sabbia ghiaiosa		0,60-1,40	13,97	Navfac 1971-1982	2,92
Strato (3) sabbia e limo		1,40-2,60	7,60	Navfac 1971-1982	1,58
Strato (4) ghiaia sabbiosa		2,60-3,00	33,08	Navfac 1971-1982	6,02
Strato (5) ghiaia debolmente sabbiosa	,	3,00-3,60	51,94	Navfac 1971-1982	8,46

Qc (Resistenza punta Penetrometro Statico)

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc
		(m)			(Kg/cm ²)
Strato (1)	24,50	0.00-0,60	24,50	Robertson 1983	49,00
ghiaia sabbiosa					
Strato (2)	13,97	0,60-1,40	13,97	Robertson 1983	27,94
sabbia ghiaiosa					
Strato (3)	7,60	1,40-2,60	7,60	Robertson 1983	15,20
sabbia e limo					
Strato (4)	33,08	2,60-3,00	33,08	Robertson 1983	66,16
ghiaia sabbiosa					
Strato (5)	51,94	3,00-3,60	51,94	Robertson 1983	103,88
ghiaia debolmente					
sabbiosa					

PROVA ... Nr.6

Strumento utilizzato... Prova eseguita in data Profondita' prova Falda non rilevata DPSH TG 63-200 PAGANI 22/04/2024 1,80 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,20	11	0,855	98,78	115,58	4,94	5,78
0,40	11	0,851	98,33	115,58	4,92	5,78
0,60	8	0,847	65,34	77,15	3,27	3,86
0,80	5	0,843	40,66	48,22	2,03	2,41
1,00	4	0,840	32,39	38,57	1,62	1,93
1,20	5	0,836	40,32	48,22	2,02	2,41
1,40	17	0,783	128,34	163,94	6,42	8,20
1,60	33	0,680	199,83	294,06	9,99	14,70
1,80	38	0,676	229,01	338,61	11,45	16,93

Pro	of. Strato	NPDM	Rd	Tipo	Peso unita'	Peso unita'	Tensione	Coeff. di	NSPT	Descrizione
	(m)		(Kg/cm ²)		di volume	di volume	efficace	correlaz. con		
					(t/m^3)	saturo	(Kg/cm ²)	Nspt		
						(t/m^3)				
	0,6	10	102,77	Incoerente	1,87	1,95	0,06	1,47	14,7	sabbia ghiaiosa
	1,2	4,67	45	Incoerente	1,62	1,9	0,16	1,47	6,86	sabbia limosa
	1,8	29,33	265,54	Incoerente	2,21	2,12	0,28	1,47	43,12	ghiaia debolmente
										sabbiosa

STIMA PARAMETRI GEOTECNICI PROVA Nr.6

TERRENI INCOERENTI

Densita' relativa

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)	14,70	0.00-0,60	14,70	Meyerhof 1957	92,6
sabbia ghiaiosa					
Strato (2)	6,86	0,60-1,20	6,86	Meyerhof 1957	59,28
sabbia limosa				-	
Strato (3)	43,12	1,20-1,80	43,12	Meyerhof 1957	100
ghiaia debolmente				-	
sabbiosa					

Angolo di resistenza al taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
Strato (1) sabbia ghiaiosa		(m) 0.00-0,60	14,70	Meyerhof (1956)	24,2
Strato (2) sabbia limosa	6,86	0,60-1,20	6,86	Meyerhof (1956)	21,96
Strato (3) ghiaia debolmente sabbiosa	,	1,20-1,80	43,12	Mitchell & Katti (1981)	35-38

Modulo di Young

Wiodulo di Toding					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo di Young
		(m)			(Kg/cm ²)
Strato (1)	14,70	0.00-0,60	14,70	Schultze-Menzenbach	123,01
sabbia ghiaiosa				Sabbia limosa	
Strato (2)	6,86	0,60-1,20	6,86	Schultze-Menzenbach	81,46
sabbia limosa				Sabbia limosa	
Strato (3)	43,12	1,20-1,80	43,12	Schultze-Menzenbach	397,56
ghiaia debolmente				Ghiaia e Sabbia	
sabbiosa					

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo Edometrico
		(m)			(Kg/cm ²)
Strato (1)	14,70	0.00-0,60	14,70	Menzenbach e Malcev	103,56
sabbia ghiaiosa				(Sabbia media)	
Strato (2)	6,86	0,60-1,20	6,86	Menzenbach e Malcev	68,60
sabbia limosa				(Sabbia media)	
Strato (3)	43,12	1,20-1,80	43,12	Menzenbach e Malcev	230,32
ghiaia debolmente				(Sabbia media)	
sabbiosa					

Classificazione AGI

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione AGI
		(m)			
Strato (1)	14,70	0.00-0,60	14,70	Classificazione A.G.I	MODERATAMENTE
sabbia ghiaiosa					ADDENSATO
Strato (2)	6,86	0,60-1,20	6,86	Classificazione A.G.I	POCO ADDENSATO
sabbia limosa					
Strato (3)	43,12	1,20-1,80	43,12	Classificazione A.G.I	ADDENSATO
ghiaia debolmente					
sabbiosa					

Peso unita' di volume

1 000 minu di comme					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita' di Volume
		(m)			(t/m^3)
Strato (1)	14,70	0.00-0,60	14,70	Terzaghi-Peck 1948	1,54
sabbia ghiaiosa					
Strato (2)	6,86	0,60-1,20	6,86	Terzaghi-Peck 1948	1,44
sabbia limosa				_	
Strato (3)	43,12	1,20-1,80	43,12	Terzaghi-Peck 1948	1,81
ghiaia debolmente				_	
sabbiosa					

Peso	unita!	di	vo	lume	saturo	
FESO	uma	uı	VU.	lume	Saturo	

1 CSO unita di volune sate	ar o				
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita' Volume
		(m)			Saturo
					(t/m³)
Strato (1)	14,70	0.00-0,60	14,70	Terzaghi-Peck 1948	1,96
sabbia ghiaiosa					
Strato (2)	6,86	0,60-1,20	6,86	Terzaghi-Peck 1948	1,89
sabbia limosa					
Strato (3)	43,12	1,20-1,80	43,12	Terzaghi-Peck 1948	2,12
ghiaia debolmente					
sabbiosa					

Modulo di Poisson

Trouble at 1 closes						
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Poisson	
		(m)				
Strato (1)	14,70	0.00-0,60	14,70	(A.G.I.)	0,33	
sabbia ghiaiosa						
Strato (2)	6,86	0,60-1,20	6,86	(A.G.I.)	0,34	
sabbia limosa						
Strato (3)	43,12	1,20-1,80	43,12	(A.G.I.)	0,27	
ghiaia debolmente						
sabbiosa						

Modulo di deformazione a taglio dinamico

Wiodulo di delolillazione	a tagno unanneo				
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm ²)
Strato (1)	14,70	0.00-0,60	14,70	Ohsaki (Sabbie pulite)	813,19
sabbia ghiaiosa					
Strato (2)	6,86	0,60-1,20	6,86	Ohsaki (Sabbie pulite)	397,24
sabbia limosa					
Strato (3)	43,12	1,20-1,80	43,12	Ohsaki (Sabbie pulite)	2236,20
ghiaia debolmente					
sabbiosa					

Velocita' onde di taglio

velocità onde di tagno					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Velocita' onde di taglio
		(m)			(m/s)
Strato (1)	14,70	0.00-0,60	14,70	Ohta & Goto (1978)	86,33
sabbia ghiaiosa				Limi	
Strato (2)	6,86	0,60-1,20	6,86	Ohta & Goto (1978)	93,54
sabbia limosa				Limi	
Strato (3)	43,12	1,20-1,80	43,12	Ohta & Goto (1978)	141,88
ghiaia debolmente				Limi	
sabbiosa					

Coefficiente spinta a Riposo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	K0
		(m)			
Strato (1)	14,70	0.00-0,60	14,70	Navfac 1971-1982	3,07
sabbia ghiaiosa					
Strato (2)	6,86	0,60-1,20	6,86	Navfac 1971-1982	1,41
sabbia limosa					
Strato (3)	43,12	1,20-1,80	43,12	Navfac 1971-1982	7,27
ghiaia debolmente					
sabbiosa					

Qc (Resistenza punta Penetrometro Statico)

QC (Resistenza punta i e	netrometro Statico)				
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc
		(m)			(Kg/cm ²)
Strato (1)	14,70	0.00-0,60	14,70	Robertson 1983	29,40
sabbia ghiaiosa					
Strato (2)	6,86	0,60-1,20	6,86	Robertson 1983	13,72
sabbia limosa					
Strato (3)	43,12	1,20-1,80	43,12	Robertson 1983	86,24
ghiaia debolmente					
sabbiosa					

PROVA ... Nr.7

Strumento utilizzato... Prova eseguita in data Profondita' prova Falda non rilevata DPSH TG 63-200 PAGANI 22/04/2024 6,40 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita'(m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier -	Pres. ammissibile Herminier - Olandesi
					Olandesi (Kg/cm²)	(Kg/cm ²)
0,20	23	0,755	182,37	241,67	9,12	12,08
0,40	18	0,801	151,45	189,13	7,57	9,46
0,60	8	0,847	65,34	77,15	3,27	3,86
0,80	5	0,843	40,66	48,22	2,03	2,41
1,00	5	0,840	40,49	48,22	2,02	2,41
1,20	7	0,836	56,45	67,50	2,82	3,38
1,40	6	0,833	48,19	57,86	2,41	2,89
1,60	5	0,830	36,96	44,55	1,85	2,23
1,80	4	0,826	29,45	35,64	1,47	1,78
2,00	4	0,823	29,34	35,64	1,47	1,78
2,20	3	0,820	21,92	26,73	1,10	1,34
2,40	2	0,817	14,56	17,82	0,73	0,89
2,60	3	0,814	20,23	24,85	1,01	1,24
2,80	2	0,811	13,44	16,56	0,67	0,83
3,00	2	0,809	13,39	16,56	0,67	0,83
3,20	2	0,806	13,35	16,56	0,67	0,83
3,40	2	0,803	13,31	16,56	0,67	0,83
3,60	14	0,751	81,32	108,30	4,07	5,41
3,80	11	0,798	67,94	85,09	3,40	4,25
4,00	7	0,796	43,10	54,15	2,16	2,71
4,20	2	0,794	12,28	15,47	0,61	0,77
4,40	2	0,791	12,24	15,47	0,61	0,77
4,60	2	0,789	11,45	14,51	0,57	0,73
4,80	6	0,787	34,27	43,54	1,71	2,18
5,00	12	0,785	68,36	87,08	3,42	4,35
5,20	6	0,783	34,09	43,54	1,70	2,18

5,40	2	0,781	11,34	14,51	0,57	0,73
5,60	4	0,779	21,30	27,34	1,06	1,37
5,80	5	0,777	26,56	34,17	1,33	1,71
6,00	26	0,675	120,02	177,69	6,00	8,88
6,20	35	0,624	149,19	239,19	7,46	11,96
6,40	39	0,572	152,46	266,53	7,62	13,33

Prof. Strato (m)	NPDM	Rd (Kg/cm²)	Tipo	Peso unita' di volume	Peso unita' di volume	Tensione efficace	Coeff. di correlaz. con	NSPT	Descrizione
				(t/m^3)	saturo (t/m³)	(Kg/cm ²)	Nspt		
0,4	20,5	215,4	Incoerente	2,14	2,04	0,04	1,47	30,14	ghiaia sabbiosa
1,4	6,2	59,79	Incoerente	1,7	1,91	0,17		9,11	sabbia limosa
3,4	2,9	25,15	Incoerente	1,51	1,88	0,41	1,47	4,26	limo sabbioso
4	10,67	82,51	Incoerente	1,9	1,95	0,61	1,47	15,68	sabbia
									debolmenteghiaiosa
4,6	2	15,15	Incoerente	1,45	1,87	0,72	1,47	2,94	limo e sabbialimo con
									sabbia
5,2	8	58,05	Incoerente	1,79	1,93	0,81	1,47	11,76	sabbia limosa
5,8	3,67	25,34	Incoerente	1,56	1,89	0,91	1,47	5,39	limo sabbioso
6,4	33,33	227,8	Incoerente	2,23	2,16	1,03	1,47	49	ghiaia debolmente
									sabbiosa

STIMA PARAMETRI GEOTECNICI PROVA Nr.7

TERRENI INCOERENTI

-	• .			
1)en	sita	' re	lativa	Ŧ

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)		0.00-0,40	30,14	Meyerhof 1957	100
ghiaia sabbiosa					
Strato (2)		0,40-1,40	9,11	Meyerhof 1957	67,93
sabbia limosa					
Strato (3)	4,26	1,40-3,40	4,26	Meyerhof 1957	41,2
limo sabbioso					
Strato (4)	15,68	3,40-4,00	15,68	Meyerhof 1957	72,53
sabbia					
debolmenteghiaiosa					
Strato (5)	2,94	4,00-4,60	2,94	Meyerhof 1957	30,27
limo e sabbialimo con					
sabbia					
Strato (6)	11,76	4,60-5,20	11,76	Meyerhof 1957	58,56
sabbia limosa					
Strato (7)	5,39	5,20-5,80	5,39	Meyerhof 1957	38,39
limo sabbioso					
Strato (8)	49,00	5,80-6,40	49,00	Meyerhof 1957	100
ghiaia debolmente					
sabbiosa					

Angolo di resistenza al taglio

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Angolo d'attrito (°)
Strato (1) ghiaia sabbiosa	30,14	0.00-0,40	30,14	Meyerhof (1956)	28,61
Strato (2) sabbia limosa	9,11	0,40-1,40	9,11	Meyerhof (1956)	22,6
Strato (3) limo sabbioso	4,26	1,40-3,40	4,26	Meyerhof (1956)	21,22
Strato (4) sabbia debolmenteghiaiosa	15,68	3,40-4,00	15,68	Meyerhof (1956)	24,48
Strato (5) limo e sabbialimo con sabbia	2,94	4,00-4,60	2,94	Meyerhof (1956)	20,84
Strato (6) sabbia limosa	11,76	4,60-5,20	11,76	Meyerhof (1956)	23,36
Strato (7) limo sabbioso	5,39	5,20-5,80	5,39	Meyerhof (1956)	21,54
Strato (8)	49,00	5,80-6,40	49,00	Mitchell & Katti (1981)	35-38

			,		
ghiaia debolmente sabbiosa					
Modulo di Young					
Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Modulo di Young (Kg/cm²)
Strato (1) ghiaia sabbiosa	30,14	0.00-0,40	30,14	Schultze-Menzenbach Sabbia limosa	204,84
Strato (2) sabbia limosa	9,11	0,40-1,40	9,11	Schultze-Menzenbach Sabbia limosa	93,38
Strato (3) limo sabbioso	4,26	1,40-3,40	4,26	Schultze-Menzenbach Sabbia limosa	67,68
Strato (4) sabbia debolmenteghiaiosa	15,68	3,40-4,00	15,68	Schultze-Menzenbach Sabbia limosa	128,20
Strato (5) limo e sabbialimo con sabbia	2,94	4,00-4,60	2,94	Schultze-Menzenbach Sabbia limosa	60,68
Strato (6) sabbia limosa	11,76	4,60-5,20	11,76	Schultze-Menzenbach Sabbia limosa	107,43
Strato (7)	5,39	5,20-5,80	5,39	Schultze-Menzenbach Sabbia limosa	73,67
Strato (8) ghiaia debolmente sabbiosa	49,00	5,80-6,40	49,00	Schultze-Menzenbach Ghiaia e Sabbia	459,30
Modulo Edometrico					
Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Modulo Edometrico (Kg/cm²)
Strato (1) ghiaia sabbiosa	30,14	0.00-0,40	30,14	Menzenbach e Malcev (Sabbia media)	172,42
Strato (2) sabbia limosa	9,11	0,40-1,40	9,11	Menzenbach e Malcev (Sabbia media)	78,63
Strato (3) limo sabbioso	4,26	1,40-3,40	4,26	Menzenbach e Malcev (Sabbia media)	57,00
Strato (4) sabbia debolmenteghiaiosa	15,68	3,40-4,00	15,68	Menzenbach e Malcev (Sabbia media)	107,93
Strato (5) limo e sabbialimo con sabbia	2,94	4,00-4,60	2,94	Menzenbach e Malcev (Sabbia media)	51,11
Strato (6) sabbia limosa	11,76	4,60-5,20	11,76	Menzenbach e Malcev (Sabbia media)	90,45
Strato (7)	5,39	5,20-5,80	5,39	Menzenbach e Malcev (Sabbia media)	62,04
Strato (8) ghiaia debolmente sabbiosa	49,00	5,80-6,40	49,00	Menzenbach e Malcev (Sabbia media)	256,54
Classificazione AGI		·			
Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Classificazione AGI
Strato (1) ghiaia sabbiosa	30,14	0.00-0,40	30,14	Classificazione A.G.I	ADDENSATO
Strato (2) sabbia limosa	9,11	0,40-1,40	9,11	Classificazione A.G.I	POCO ADDENSATO
Strato (3) limo sabbioso	4,26	1,40-3,40	4,26	Classificazione A.G.I	POCO ADDENSATO
Strato (4) sabbia debolmenteghiaiosa	15,68	3,40-4,00	15,68	Classificazione A.G.I	MODERATAMENTE ADDENSATO
Strato (5) limo e sabbialimo con sabbia	2,94	4,00-4,60	2,94	Classificazione A.G.I	SCIOLTO
Strato (6) sabbia limosa	11,76	4,60-5,20	11,76	Classificazione A.G.I	MODERATAMENTE ADDENSATO
Strato (7) limo sabbioso	5,39	5,20-5,80	5,39	Classificazione A.G.I	POCO ADDENSATO
Strato (8) ghiaia debolmente sabbiosa	49,00	5,80-6,40	49,00	Classificazione A.G.I	ADDENSATO

Peso	unita' (di vol	lume
------	----------	--------	------

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unita' di Volume (t/m³)
Strato (1)	30,14	0.00-0,40	30,14	Terzaghi-Peck 1948	1,70
ghiaia sabbiosa					
Strato (2)	9,11	0,40-1,40	9,11	Terzaghi-Peck 1948	1,47
sabbia limosa					
Strato (3)	4,26	1,40-3,40	4,26	Terzaghi-Peck 1948	1,40
limo sabbioso					
Strato (4)	15,68	3,40-4,00	15,68	Terzaghi-Peck 1948	1,55
sabbia					
debolmenteghiaiosa					
Strato (5)	2,94	4,00-4,60	2,94	Terzaghi-Peck 1948	1,38
limo e sabbialimo con					
sabbia					
Strato (6)	11,76	4,60-5,20	11,76	Terzaghi-Peck 1948	1,50
sabbia limosa					
Strato (7)	5,39	5,20-5,80	5,39	Terzaghi-Peck 1948	1,42
limo sabbioso					
Strato (8)	49,00	5,80-6,40	49,00	Terzaghi-Peck 1948	1,85
ghiaia debolmente					
sabbiosa					

Peso unita' di volume saturo

Peso unita' di volume saturo					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita' Volume
		(m)			Saturo
					(t/m^3)
Strato (1)	30,14	0.00-0,40	30,14	Terzaghi-Peck 1948	2,06
ghiaia sabbiosa					
Strato (2)	9,11	0,40-1,40	9,11	Terzaghi-Peck 1948	1,91
sabbia limosa					
Strato (3)	4,26	1,40-3,40	4,26	Terzaghi-Peck 1948	1,87
limo sabbioso					
Strato (4)	15,68	3,40-4,00	15,68	Terzaghi-Peck 1948	1,96
sabbia				-	
debolmenteghiaiosa					
Strato (5)	2,94	4,00-4,60	2,94	Terzaghi-Peck 1948	1,86
limo e sabbialimo con				-	
sabbia					
Strato (6)	11,76	4,60-5,20	11,76	Terzaghi-Peck 1948	1,93
sabbia limosa				-	
Strato (7)	5,39	5,20-5,80	5,39	Terzaghi-Peck 1948	1,88
limo sabbioso				-	
Strato (8)	49,00	5,80-6,40	49,00	Terzaghi-Peck 1948	2,15
ghiaia debolmente				-	
sabbiosa					

Modulo di Poisson

Descrizione NSPT		Prof. Strato	N. Calcolo	Correlazione	Poisson
		(m)			
Strato (1)	30,14	0.00-0,40	30,14	(A.G.I.)	0,29
ghiaia sabbiosa					
Strato (2)	9,11	0,40-1,40	9,11	(A.G.I.)	0,34
sabbia limosa					
Strato (3)	4,26	1,40-3,40	4,26	(A.G.I.)	0,35
limo sabbioso					
Strato (4)	15,68	3,40-4,00	15,68	(A.G.I.)	0,32
sabbia					
debolmenteghiaiosa					
Strato (5)	2,94	4,00-4,60	2,94	(A.G.I.)	0,35
limo e sabbialimo con					
sabbia					
Strato (6)	11,76	4,60-5,20	11,76	(A.G.I.)	0,33
sabbia limosa					
Strato (7)	5,39	5,20-5,80	5,39	(A.G.I.)	0,34
limo sabbioso					
Strato (8)	49,00	5,80-6,40	49,00	(A.G.I.)	0,26
ghiaia debolmente					
sabbiosa					

Modulo di deformazione a taglio dinamico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
Descrizione	NSF I		IV. Calcolo	Correrazione	_
		(m)			(Kg/cm ²)
Strato (1)	30,14	0.00-0,40	30,14	Ohsaki (Sabbie pulite)	1597,01
ghiaia sabbiosa					
Strato (2)	9,11	0,40-1,40	9,11	Ohsaki (Sabbie pulite)	518,63
sabbia limosa					
Strato (3)	4,26	1,40-3,40	4,26	Ohsaki (Sabbie pulite)	253,84
limo sabbioso				, ,	
Strato (4)	15,68	3,40-4,00	15,68	Ohsaki (Sabbie pulite)	864,05
sabbia				`	
debolmenteghiaiosa					
Strato (5)	2,94	4,00-4,60	2,94	Ohsaki (Sabbie pulite)	179,13
limo e sabbialimo con				`	
sabbia					
Strato (6)	11,76	4,60-5,20	11,76	Ohsaki (Sabbie pulite)	659,32
sabbia limosa	ŕ		·	` '	-
Strato (7)	5,39	5,20-5,80	5,39	Ohsaki (Sabbie pulite)	316,67
limo sabbioso				, ,	
Strato (8)	49,00	5,80-6,40	49,00	Ohsaki (Sabbie pulite)	2521,72
ghiaia debolmente				•	
sabbiosa					

Velocita' onde di taglio

Velocita' onde di taglio					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Velocita' onde di taglio
		(m)			(m/s)
Strato (1)	30,14	0.00-0,40	30,14	Ohta & Goto (1978)	90,39
ghiaia sabbiosa				Limi	
Strato (2)	9,11	0,40-1,40	9,11	Ohta & Goto (1978)	98,24
sabbia limosa				Limi	
Strato (3)	4,26	1,40-3,40	4,26	Ohta & Goto (1978)	104,09
limo sabbioso				Limi	
Strato (4)	15,68	3,40-4,00	15,68	Ohta & Goto (1978)	141,77
sabbia				Limi	
debolmenteghiaiosa					
Strato (5)	2,94	4,00-4,60	2,94	Ohta & Goto (1978)	109,25
limo e sabbialimo con				Limi	
sabbia					
Strato (6)	11,76	4,60-5,20	11,76	Ohta & Goto (1978)	142,4
sabbia limosa				Limi	
Strato (7)	5,39	5,20-5,80	5,39	Ohta & Goto (1978)	127,23
limo sabbioso				Limi	
Strato (8)	49,00	5,80-6,40	49,00	Ohta & Goto (1978)	190,15
ghiaia debolmente				Limi	
sabbiosa					

Coefficiente spinta a Riposo

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	K0
Strato (1) ghiaia sabbiosa	-	0.00-0,40	30,14	Navfac 1971-1982	5,63
Strato (2) sabbia limosa	9,11	0,40-1,40	9,11	Navfac 1971-1982	1,91
Strato (3) limo sabbioso	-	1,40-3,40	4,26	Navfac 1971-1982	0,81
Strato (4) sabbia debolmenteghiaiosa	,	3,40-4,00	15,68	Navfac 1971-1982	3,26
Strato (5) limo e sabbialimo con sabbia		4,00-4,60	2,94	Navfac 1971-1982	0,50
Strato (6) sabbia limosa	-	4,60-5,20	11,76	Navfac 1971-1982	2,47
Strato (7) limo sabbioso	-	5,20-5,80	5,39	Navfac 1971-1982	1,08
Strato (8) ghiaia debolmente sabbiosa		5,80-6,40	49,00	Navfac 1971-1982	8,04

Qc (Resistenza punta Penetrometro Statico)

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Qc (Kg/cm²)
Strato (1) ghiaia sabbiosa		0.00-0,40	30,14	Robertson 1983	60,28
Strato (2) sabbia limosa	9,11	0,40-1,40	9,11	Robertson 1983	18,22
Strato (3) limo sabbioso	4,26	1,40-3,40	4,26	Robertson 1983	8,52
Strato (4) sabbia debolmenteghiaiosa	15,68	3,40-4,00	15,68	Robertson 1983	31,36
Strato (5) limo e sabbialimo con sabbia	2,94	4,00-4,60	2,94	Robertson 1983	5,88
Strato (6) sabbia limosa	11,76	4,60-5,20	11,76	Robertson 1983	23,52
Strato (7) limo sabbioso		5,20-5,80	5,39	Robertson 1983	10,78
Strato (8) ghiaia debolmente sabbiosa	-	5,80-6,40	49,00	Robertson 1983	98,00

PROVA ... Nr.8

Strumento utilizzato... Prova eseguita in data Profondita' prova Falda non rilevata DPSH TG 63-200 PAGANI 29/04/2024 3,20 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,20	2	0,855	17,96	21,01	0,90	1,05
0,40	3	0,851	26,82	31,52	1,34	1,58
0,60	5	0,847	40,84	48,22	2,04	2,41
0,80	6	0,843	48,80	57,86	2,44	2,89
1,00	12	0,840	97,18	115,72	4,86	5,79
1,20	12	0,836	96,77	115,72	4,84	5,79
1,40	13	0,783	98,14	125,36	4,91	6,27
1,60	16	0,780	111,14	142,57	5,56	7,13
1,80	14	0,776	96,85	124,75	4,84	6,24
2,00	14	0,773	96,46	124,75	4,82	6,24
2,20	14	0,770	96,07	124,75	4,80	6,24
2,40	18	0,767	123,05	160,40	6,15	8,02
2,60	27	0,714	159,71	223,61	7,99	11,18
2,80	35	0,661	191,72	289,86	9,59	14,49
3,00	38	0,659	207,29	314,70	10,36	15,74
3,20	40	0,606	200,75	331,27	10,04	16,56

I	Prof. Strato	NPDM	Rd	Tipo	Peso unita'	Peso unita'	Tensione	Coeff. di	NSPT	Descrizione
	(m)		(Kg/cm ²)		di volume	di volume	efficace	correlaz. con		
					(t/m^3)	saturo	(Kg/cm ²)	Nspt		
						(t/m^3)				
	0,4	2,5	26,27	Incoerente	1,48	1,88	0,03	1,47	3,68	limo sabbioso
	2,2	11,78	108,86	Incoerente	1,94	1,96	0,23	1,47	17,32	sabbia ghiaiosa
	2,4	18	160,4	Incoerente	2,1	2,02	0,43	1,47	26,46	ghiaia sabbiosa
	3,2	35	289,86	Incoerente	2,24	2,15	0,54	1,47	51,45	ghiaia debolmente
										sabbiosa

STIMA PARAMETRI GEOTECNICI PROVA Nr.8

TERRENI INCOERENTI

Densita' relativa

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)	3,68	0.00-0,40	3,68	Meyerhof 1957	47,16
limo sabbioso				-	
Strato (2)	17,32	0,40-2,20	17,32	Meyerhof 1957	90,44
sabbia ghiaiosa				•	
Strato (3)	26,46	2,20-2,40	26,46	Meyerhof 1957	100
ghiaia sabbiosa				•	
Strato (4)	51,45	2,40-3,20	51,45	Meyerhof 1957	100
ghiaia debolmente				•	
sabbiosa					

Angolo di resistenza al taglio

Aligoto di l'esisteliza ai ta	C				
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1)	3,68	0.00-0,40	3,68	Meyerhof (1956)	21,05
limo sabbioso					
Strato (2)	17,32	0,40-2,20	17,32	Meyerhof (1956)	24,95
sabbia ghiaiosa					
Strato (3)	26,46	2,20-2,40	26,46	Meyerhof (1956)	27,56
ghiaia sabbiosa					
Strato (4)	51,45	2,40-3,20	51,45	Mitchell & Katti (1981)	>38
ghiaia debolmente					
sabbiosa					

Modulo di Young

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo di Young
		(m)			(Kg/cm ²)
Strato (1)	3,68	0.00-0,40	3,68	Schultze-Menzenbach	64,60
limo sabbioso				Sabbia limosa	
Strato (2)	17,32	0,40-2,20	17,32	Schultze-Menzenbach	136,90
sabbia ghiaiosa				Sabbia limosa	
Strato (3)	26,46	2,20-2,40	26,46	Schultze-Menzenbach	185,34
ghiaia sabbiosa				Sabbia limosa	
Strato (4)	51,45	2,40-3,20	51,45	Schultze-Menzenbach	485,02
ghiaia debolmente				Ghiaia e Sabbia	
sabbiosa					

Modulo Edometrico

Modulo Edometrico					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo Edometrico
		(m)			(Kg/cm ²)
Strato (1)	3,68	0.00-0,40	3,68	Menzenbach e Malcev	54,41
limo sabbioso				(Sabbia media)	
Strato (2)	17,32	0,40-2,20	17,32	Menzenbach e Malcev	115,25
sabbia ghiaiosa				(Sabbia media)	
Strato (3)	26,46	2,20-2,40	26,46	Menzenbach e Malcev	156,01
ghiaia sabbiosa				(Sabbia media)	
Strato (4)	51,45	2,40-3,20	51,45	Menzenbach e Malcev	267,47
ghiaia debolmente				(Sabbia media)	
sabbiosa					

Classificazione AGI

Classificazione /101					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione AGI
		(m)			
Strato (1)	3,68	0.00-0,40	3,68	Classificazione A.G.I	SCIOLTO
limo sabbioso					
Strato (2)	17,32	0,40-2,20	17,32	Classificazione A.G.I	MODERATAMENTE
sabbia ghiaiosa					ADDENSATO
Strato (3)	26,46	2,20-2,40	26,46	Classificazione A.G.I	MODERATAMENTE
ghiaia sabbiosa					ADDENSATO
Strato (4)	51,45	2,40-3,20	51,45	Classificazione A.G.I	MOLTO ADDENSATO
ghiaia debolmente					
sabbiosa					

-				
Daco	unita'	41	370	nma

1 coo anna ar voranic	eso unta di votane							
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita' di Volume			
		(m)			(t/m³)			
Strato (1)	3,68	0.00-0,40	3,68	Terzaghi-Peck 1948	1,39			
limo sabbioso								
Strato (2)	17,32	0,40-2,20	17,32	Terzaghi-Peck 1948	1,57			
sabbia ghiaiosa								
Strato (3)	26,46	2,20-2,40	26,46	Terzaghi-Peck 1948	1,66			
ghiaia sabbiosa								
Strato (4)	51,45	2,40-3,20	51,45	Terzaghi-Peck 1948	1,86			
ghiaia debolmente								
sabbiosa								

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unita' Volume Saturo (t/m³)
Strato (1) limo sabbioso	-	0.00-0,40	3,68	Terzaghi-Peck 1948	1,87
Strato (2) sabbia ghiaiosa		0,40-2,20	17,32	Terzaghi-Peck 1948	1,97
Strato (3) ghiaia sabbiosa	-	2,20-2,40	26,46	Terzaghi-Peck 1948	2,03
Strato (4) ghiaia debolmente sabbiosa	·	2,40-3,20	51,45	Terzaghi-Peck 1948	2,16

Modulo di Poisson

Wiodulo di I dissoli							
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Poisson		
		(m)					
Strato (1)	3,68	0.00-0,40	3,68	(A.G.I.)	0,35		
limo sabbioso							
Strato (2)	17,32	0,40-2,20	17,32	(A.G.I.)	0,32		
sabbia ghiaiosa							
Strato (3)	26,46	2,20-2,40	26,46	(A.G.I.)	0,3		
ghiaia sabbiosa							
Strato (4)	51,45	2,40-3,20	51,45	(A.G.I.)	0,25		
ghiaia debolmente							
sabbiosa					ļ.		

Modulo di deformazione a taglio dinamico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm ²)
Strato (1)	3,68	0.00-0,40	3,68	Ohsaki (Sabbie pulite)	221,21
limo sabbioso					
Strato (2)	17,32	0,40-2,20	17,32	Ohsaki (Sabbie pulite)	948,74
sabbia ghiaiosa					
Strato (3)	26,46	2,20-2,40	26,46	Ohsaki (Sabbie pulite)	1413,02
ghiaia sabbiosa					
Strato (4)	51,45	2,40-3,20	51,45	Ohsaki (Sabbie pulite)	2640,07
ghiaia debolmente					
sabbiosa					

Velocita' onde di taglio

	velocità onae ai tagno							
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Velocita' onde di taglio			
		(m)			(m/s)			
Strato (1)	3,68	0.00-0,40	3,68	Ohta & Goto (1978)	62,82			
limo sabbioso				Limi				
Strato (2)	17,32	0,40-2,20	17,32	Ohta & Goto (1978)	117,86			
sabbia ghiaiosa				Limi				
Strato (3)	26,46	2,20-2,40	26,46	Ohta & Goto (1978)	141,59			
ghiaia sabbiosa				Limi				
Strato (4)	51,45	2,40-3,20	51,45	Ohta & Goto (1978)	165			
ghiaia debolmente				Limi				
sabbiosa								

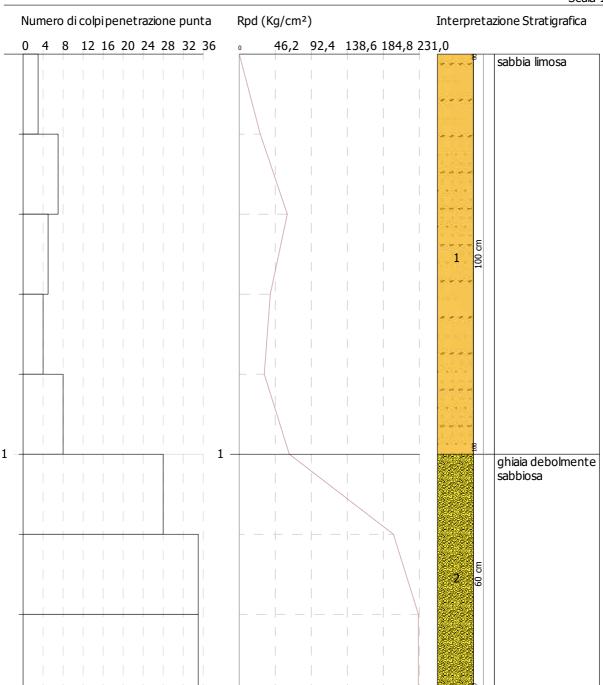
Coefficiente spinta a Riposo

Coerneiente spinta a raposo								
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	K0			
		(m)						
Strato (1)	3,68	0.00-0,40	3,68	Navfac 1971-1982	0,68			
limo sabbioso								

Dynamic probing 2024

Strato (2) sabbia ghiaiosa	-	0,40-2,20	17,32	Navfac 1971-1982	3,57
Strato (3)	26,46	2,20-2,40	26,46	Navfac 1971-1982	5,10
ghiaia sabbiosa Strato (4)		2,40-3,20	51,45	Navfac 1971-1982	8,39
ghiaia debolmente	· ·	2,40-3,20	31,43	Naviac 1971-1982	6,39
sabbiosa					

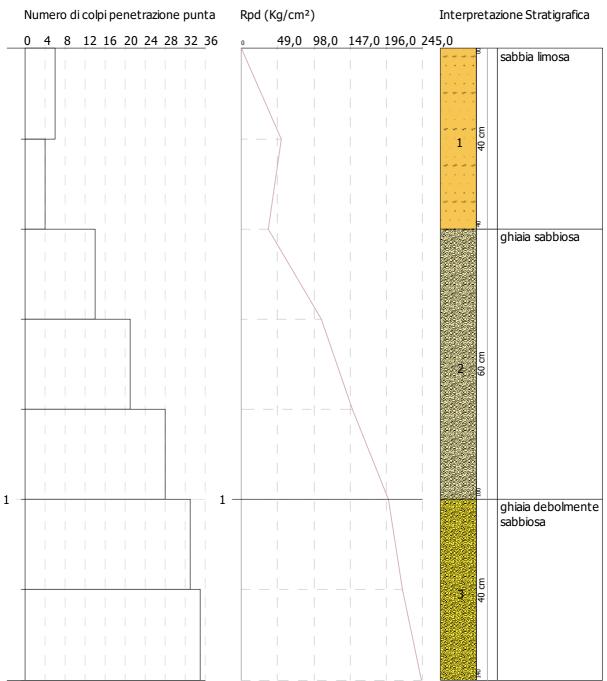
Qc (Resistenza punta Penetrometro Statico)


Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc
		(m)			(Kg/cm ²)
Strato (1)	3,68	0.00-0,40	3,68	Robertson 1983	7,36
limo sabbioso					
Strato (2)	17,32	0,40-2,20	17,32	Robertson 1983	34,64
sabbia ghiaiosa					
Strato (3)	26,46	2,20-2,40	26,46	Robertson 1983	52,92
ghiaia sabbiosa					
Strato (4)	51,45	2,40-3,20	51,45	Robertson 1983	102,90
ghiaia debolmente					
sabbiosa					

PROVA PENETROMETRICA DINAMICA Nr.1 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: Amm.ne Comunale Descrizione: Marina Palmense Localita': Fermo

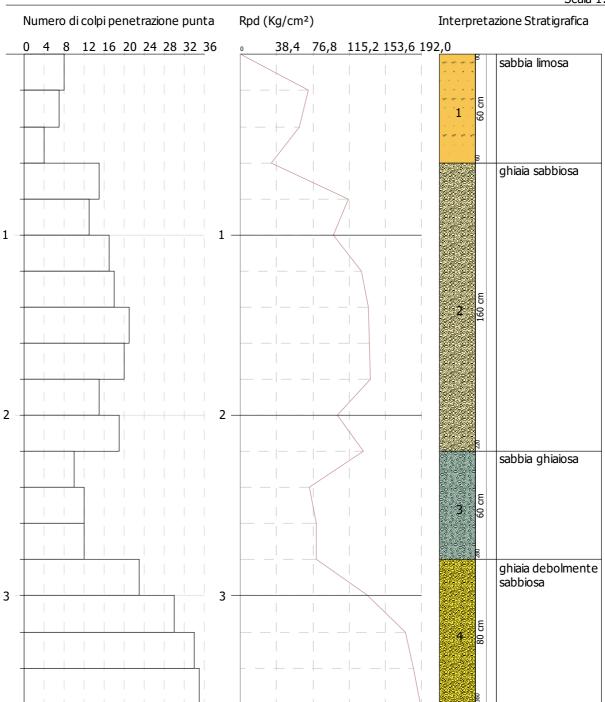
22/04/2024



PROVA PENETROMETRICA DINAMICA Nr.2 Strumento utilizzato... DPSHTG 63-200 PAGANI

Committente: Amm.ne Comunale Descrizione: Marina Palmense Localita': Fermo

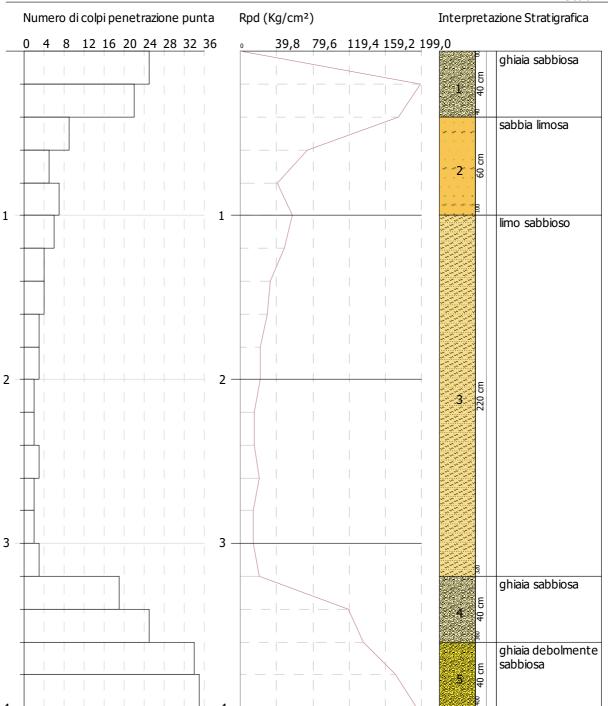
22/04/2024



PROVA PENETROMETRICA DINAMICA Nr.3 Strumento utilizzato... DPSHTG 63-200 PAGANI

Committente: Amm.ne Comunale Descrizione: Marina Palmense Localita': Fermo

22/04/2024



PROVA PENETROMETRICA DINAMICA Nr.4 Strumento utilizzato... DPSHTG 63-200 PAGANI

Committente: Amm.ne Comunale Descrizione: Marina Palmense Localita': Fermo

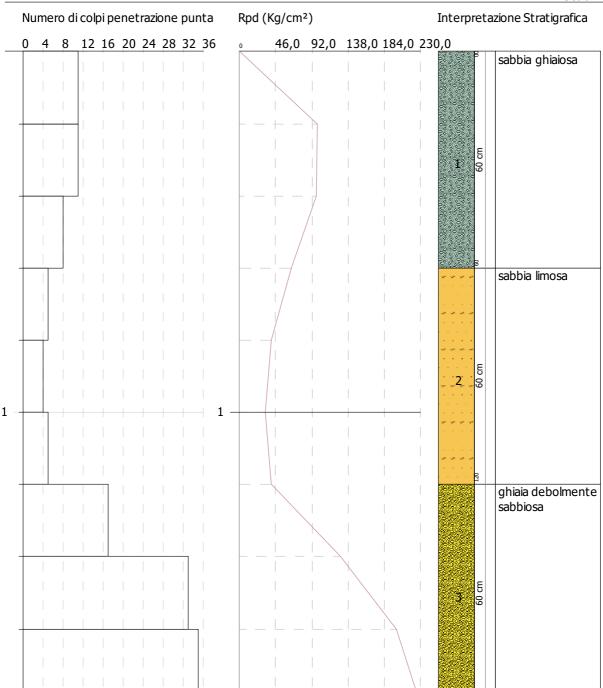
22/04/2024



PROVA PENETROMETRICA DINAMICA Nr.5 Strumento utilizzato... DPSHTG 63-200 PAGANI

Committente: Amm.ne Comunale Descrizione: Marina Palmense Localita': Fermo

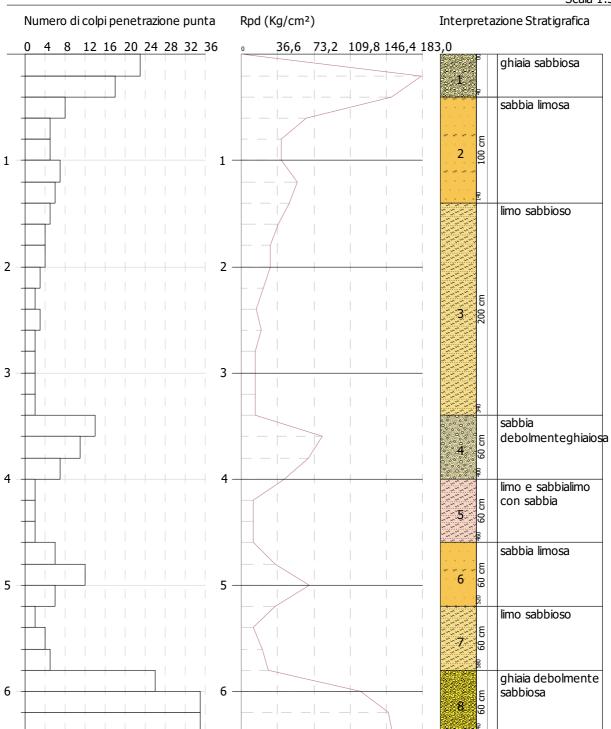
22/04/2024



PROVA PENETROMETRICA DINAMICA Nr.6 Strumento utilizzato... DPSHTG 63-200 PAGANI

Committente: Amm.ne Comunale Descrizione: Marina Palmense Localita': Fermo

22/04/2024



PROVA PENETROMETRICA DINAMICA Nr.7 Strumento utilizzato... DPSHTG 63-200 PAGANI

Committente: Amm.ne Comunale Descrizione: Marina Palmense Localita': Fermo

22/04/2024

PROVA PENETROMETRICA DINAMICA Nr.8 Strumento utilizzato... DPSHTG 63-200 PAGANI

Committente: Amm.ne Comunale Descrizione: Marina Palmense Localita': Fermo

29/04/2024

DOTT. GEOLOGO FELICE CANTALAMESSA

GEOLOGO SPECIALISTA, N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

ALLEGATO 12 INDAGINI GEOFISICHE

Prova con tecnica Multichannel Analisys Surface Wave (M.A.S.W.)

Misura passiva dei microtremori ambientali Horizontal to Vertical Spectral Ratio (H.V.S.R.)

INDAGINI GEOFISICHE								
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense. Comune di Fermo (FM)							
02								
01	01							
00	00 Prima emissione 21/05/2024 Cantalamessa Felice Cantalamessa Fel							
REV.	DESCRIZIONE	DATA	PREPARATO	RIESAMINATO	VALIDATO			

TB INDAGINI E PROVE S.R.L.S Via Roma, 181 63082 CASTEL DI LAMA (AP) REA AP 203061 Codice Fiscale / Partita IVA: 02280810447 tb.indaginieprove@pec.it tb.indaginieprove@gmail.com

INDAGINE GEOFISICA METODO MASW - HVSR

Comune di: FERMO (FM)

Loc. Marina Palmense

Oggetto: Indagine geofisica con metodo MASW e HVSR su aree site nell'abitato di Marina Palmense

Monterubbiano: 10 maggio 2024

Sismografo AMBROGEO "ECHO 24 Seismic Unit"12 - 24 canali 24 bits N.12 -.24 Geofoni verticali a 4,5 hz geofono triassiale per HVSR 2hz

Easy MASW

La geofisica osserva il comportamento delle onde che si propagano all'interno dei materiali. Un segnale sismico, infatti, si modifica in funzione delle caratteristiche del mezzo che attraversa. Le onde possono essere generate in modo artificiale attraverso l'uso di masse battenti, di scoppi, etc.

Moto del segnale sismico

Il segnale sismico può essere scomposto in più fasi ognuna delle quali identifica il movimento delle particelle investite dalle onde sismiche. Le fasi possono essere:

- P-Longitudinale: onda profonda di compressione;
- S-Trasversale: onda profonda di taglio;
- L-Love: onda di superficie, composta da onde P e S;
- R-Rayleigh: onda di superficie composta da un movimento ellittico e retrogrado.

Onde di Ravleigh - "R"

In passato gli studi sulla diffusione delle onde sismiche si sono concentrati sulla propagazione delle onde profonde (onde P, onde S) considerando le onde di superficie come un disturbo del segnale sismico da analizzare. Recenti studi hanno consentito di creare dei modelli matematici avanzati per l'analisi delle onde di superficie in mezzi a differente rigidezza.

Analisi del segnale con tecnica MASW

Secondo l'ipotesi fondamentale della fisica lineare (Teorema di Fourier) i segnali possono essere rappresentati come la somma di segnali indipendenti, dette armoniche del segnale. Tali armoniche, per analisi monodimensionali, sono funzioni trigonometriche seno e coseno, e si comportano in modo indipendente non interagendo tra di loro. Concentrando l'attenzione su ciascuna componente armonica il risultato finale in analisi lineare risulterà equivalente alla somma dei comportamenti parziali corrispondenti alle singole armoniche. L'analisi di Fourier (analisi spettrale FFT) è lo strumento fondamentale per la caratterizzazione spettrale del segnale. L'analisi delle onde di Rayleigh, mediante tecnica MASW, viene eseguita con la trattazione spettrale del segnale nel dominio trasformato dove è possibile, in modo abbastanza agevole, identificare il segnale relativo alle onde di Rayleigh rispetto ad altri tipi di segnali, osservando, inoltre, che le onde di Rayleigh si propagano con velocità che è funzione della frequenza. Il legame velocità frequenza è detto spettro di dispersione. La curva di dispersione individuata nel dominio f-k è detta curva di dispersione sperimentale, e rappresenta in tale dominio le massime ampiezze dello spettro.

Modellizzazione

E' possibile simulare, a partire da un modello geotecnico sintetico caratterizzato da spessore, densità, coefficiente di Poisson, velocità delle onde S e velocità delle Onde P, la curva di dispersione teorica la quale lega velocità e lunghezza d'onda secondo la relazione:

$$v = \lambda \times v$$

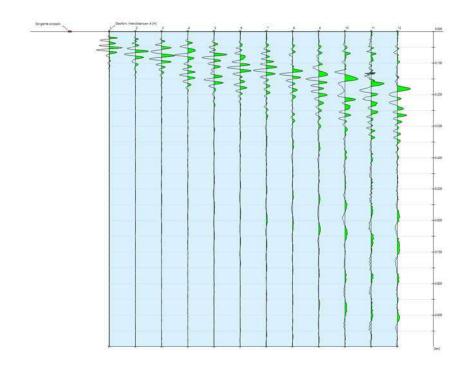
Modificando i parametri del modello geotecnico sintetico, si può ottenere una sovrapposizione della curva di dispersione teorica con quella sperimentale: questa fase è detta di inversione e consente di determinare il profilo delle velocità in mezzi a differente rigidezza.

Modi di vibrazione

Sia nella curva di inversione teorica che in quella sperimentale è possibile individuare le diverse configurazioni di vibrazione del terreno. I modi per le onde di Rayleigh possono essere: deformazioni a contatto con l'aria, deformazioni quasi nulle a metà della lunghezza d'onda e deformazioni nulle a profondità elevate.

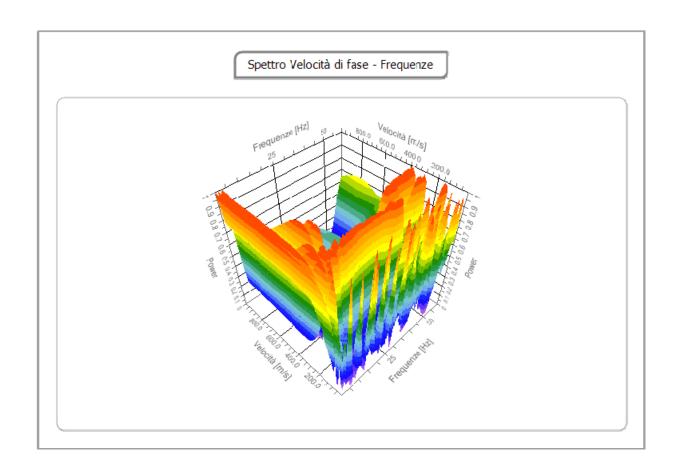
Profondità di indagine

Le onde di Rayleigh decadono a profondità circa uguali alla lunghezza d'onda. Piccole lunghezze d'onda (alte frequenze) consentono di indagare zone superficiali mentre grandi lunghezze d'onda (basse frequenze) consentono indagini a maggiore profondità.

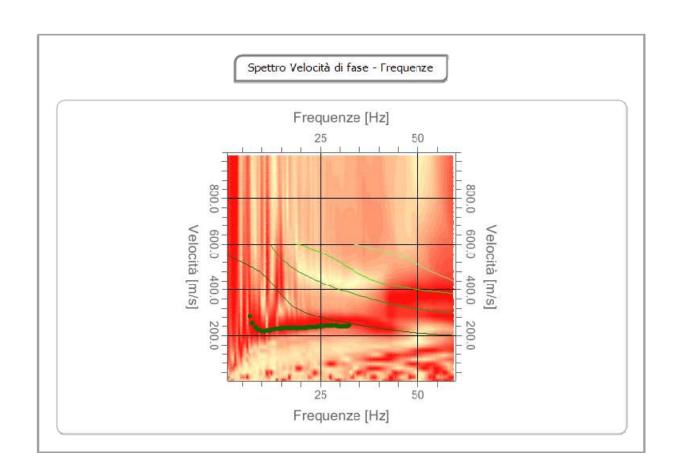

Dati generali MASW n. 1

Data | 08/05/2024 06:04

Tracce


N. tracce	12
Durata acquisizione [msec]	999.0
Interdistanza geofoni [m]	4.0
Periodo di campionamento [msec]	0.478

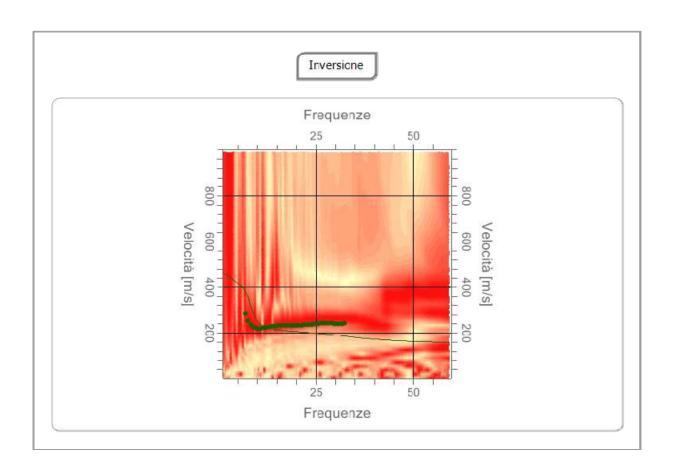
Lunghezza linea sismica 44 metri

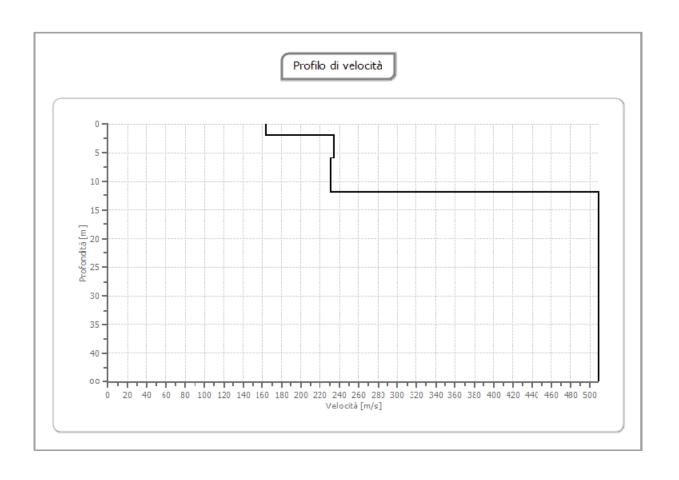

Analisi spettrale

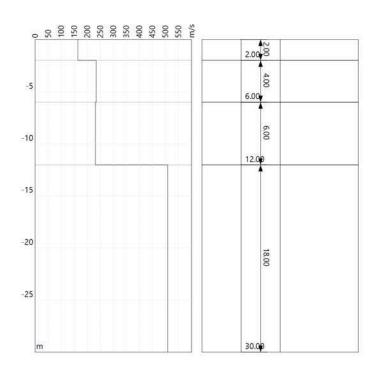
Frequenza minima di elaborazione [Hz]	1
Frequenza massima di elaborazione [Hz]	60
Velocità minima di elaborazione [m/sec]	1
Velocità massima di elaborazione [m/sec]	1000
Intervallo velocità [m/sec]	1

n.	Frequenza	Velocità	Modo
	[Hz]	[m/sec]	
1	6.8	283.3	0
2	7.5	254.8	0
3	8.1	236.6	0
4	8.8	226.0	0
5	9.4	221.1	0
6	10.1	220.1	0
7	10.7	220.9	0
8	11.4	222.4	0
9	12.0	224.3	0
10	12.7	226.2	0
11	13.3	228.0	0
12	14.0	229.6	0
13	14.6	230.8	0
14	15.3	231.7	0
15	16.0	232.3	0
16	16.6	232.7	0
17	17.3	232.9	0
18	17.9	233.0	0
19	18.6	233.1	0
20	19.2	233.2	0
21	19.9	233.4	0
22	20.5	233.8	0
23	21.2	234.3	0
24	21.8	235.0	0
25	22.5	235.9	0

26	23.1	236.9	0
27	23.8	237.9	0
28	24.4	239.0	0
29	25.1	240.1	0
30	25.7	240.9	0
31	26.4	241.6	0
32	27.0	242.0	0
33	27.7	242.2	0
34	28.3	242.0	0
35	29.0	241.5	0
36	29.6	240.9	0
37	30.3	240.3	0
38	30.9	239.9	0
39	31.6	240.2	0
40	32.2	241.5	0


Inversione


n.	Descrizio	Profondit	Spessore	Peso	Coefficie	Falda	Vp	Vs
	ne	à [m]	[m]	unità volume	nte Poisson		[m/sec]	[m/sec]
				[kg/mc]				
1		2.00	2.00	1850.0	0.38	No	372.6	163.9
2		6.00	4.00	1900.0	0.37	No	515.6	234.2
3		12.00	6.00	1950.0	0.36	No	494.4	231.3
4		00	00	1990.0	0.35	No	1059.1	508.8


Percentuale di errore 0.576 %

0.183

Fattore di disadattamento della soluzione

Risultati

Profondità piano di	0.00
posa [m]	
Vs,eq [m/sec] (H=30.00 m)	331.10
Categoria del suolo	С

Suolo di tipo C: Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

Altri parametri geotecnici

	n.	Profo	Spess	Vs	Vp	Densi	Coeffi	G0	Ed	M0	Ey	NSPT	Qc
		ndità [m]	ore [m]	[m/s]	[m/s]	tà [kg/m c]	ciente Poiss on	[MPa]	[MPa]	[MPa]	[MPa]		[kPa]
=	1	2.00	2.00	163.9 1	372.5 7	1850. 00	0.38	49.70	256.8 0	190.5	137.1 8	N/A	N/A
	2	6.00	4.00	234.2	515.5 9	1900. 00	0.37	104.2	505.0 8	366.1 2	285.5 7	N/A	N/A
	3	12.00	6.00	231.2	494.4	1950. 00	0.36	104.2	476.7	337.6 8	283.6	N/A	N/A
	4	00	00	508.7	1059. 06	1990. 00	0.35	515.0 8	2232. 00	1545. 23	1390. 71	NaN	N/A

G0: Modulo di deformazione al taglio;

Ed: Modulo edometrico;

M0: Modulo di compressibilità volumetrica;

Ey: Modulo di Young;

Ubicazione linea sismica Masw n. 1

Indagine geofisica tramite tecnica HVSR

Cenni sulla teoria della tecnica HVSR

La tecnica HVSR permette in primo luogo di valutare la frequenza di vibrazione naturale di un sito. Successivamente, come ulteriore sviluppo, la stima del parametro normativo Vseq attraverso un processo di inversione del problema iniziale. Le ipotesi alla base della tecnica sono: una concentrazione del contenuto in frequenza localizzato maggiormente in quelle basse (tipicamente al di sotto dei 20 Hz); assenza di sorgenti periodiche e/o con contenuto in alte frequenze; le sorgenti di rumore sono uniformemente distribuite intorno alla stazione di registrazione. Se queste sono soddisfatte, la tecnica può essere suddivisa nelle fasi che vengono di seguito illustrate.

Si esegue una registrazione del rumore ambientale lungo tre direzioni ortogonali tra loro (x,y,z) con una singola stazione. Tale registrazione deve essere effettuata, secondo le indicazioni del progetto SESAME, per una durata non inferiore ai 20 minuti.

Si esegue un'operazione detta di windowing, in cui le tre tracce registrate vengono suddivise in finestre temporali di prefissata durata. Secondo le indicazioni del succitato progetto SESAME tale dimensione, detta Long Period, deve essere almeno pari ai 20 secondi. Si ottiene così un insieme di finestre "long", che sono sincronizzate fra le tracce.

Queste finestre vengono filtrate in base a dei criteri che permettono di individuare l'eventuale presenza di transienti (disturbi temporanei con grandi contributi nelle frequenze alte) o di fenomeni di saturazione.

Per ciascuna delle finestre rimanenti, quindi ritenute valide, viene valutato lo spettro di Fourier. Quest'ultimo viene sottoposto a tapering e/o lisciamento secondo una delle varie tecniche note in letteratura e ritenute all'uopo idonee.

Successivamente si prendono in considerazione gli spettri delle finestre relative alle tracce orizzontali in coppia. Ovvero, ogni spettro di una finestra per esempio della direzione X, ha il suo corrispettivo per le finestre nella direzione Y, vale a dire che sono relative a finestre temporali sincrone. Per ognuna di queste coppie viene eseguita una somma tra le componenti in frequenza secondo un determinato criterio che può essere, ad esempio, una semplice media aritmetica o una somma euclidea.

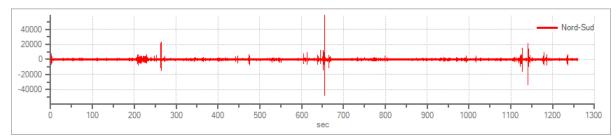
Eseguendo per ciascuna frequenza di tali rapporti spettrali una media sulle varie finestre, si ottiene il rapporto spettrale H/V medio, la cui frequenza di picco (frequenza in cui è localizzato il massimo valore assunto dal rapporto medio stesso) rappresenta la deducibile stima della frequenza naturale di vibrazione del sito.

L'ulteriore ipotesi che questo rapporto spettrale possa ritenersi una buona approssimazione dell'ellitticità del modo fondamentale della propagazione delle onde di Rayleigh, permette di confrontare questi due al fine di ottenere una stima del profilo stratigrafico. Tale procedura, detta di inversione, consente di definire il profilo sostanzialmente in termini di spessore e velocità delle onde di taglio. Avendo quindi una stima del profilo della velocità delle onde di taglio, è possibile valutarne il parametro normativo Vseq.

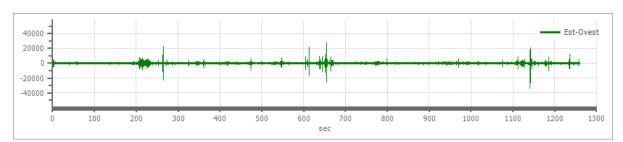
Dati generali HVSR n. 1

Responsabile:

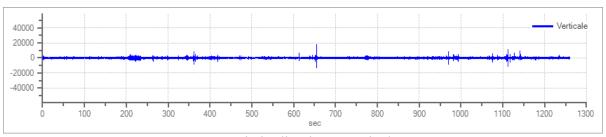
Data: 08/05/2024 00:00:00


Tracce in input

Dati riepilogativi:


Numero tracce: 3
Durata registrazione: 1260 s
Frequenza di campionamento: 156.00 Hz
Numero campioni: 196559

Direzioni tracce: Nord-Sud; Est-Ovest; Verticale.


Grafici tracce:

Traccia in direzione Nord-Sud

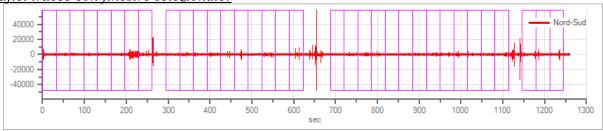
Traccia in direzione Est-Ovest

Traccia in direzione Verticale

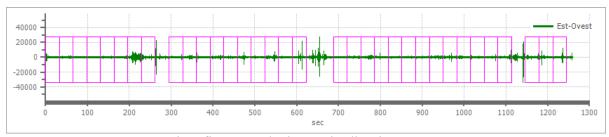
Finestre selezionate

Dati riepilogativi:

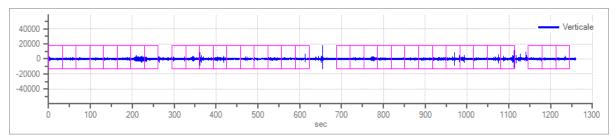
Numero totale finestre selezionate: 34 Numero finestre incluse nel calcolo: 34 Dimensione temporale finestre: 32.763 s

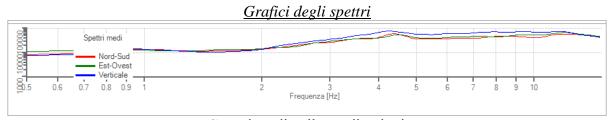

Tipo di lisciamento: Triangolare proporzionale

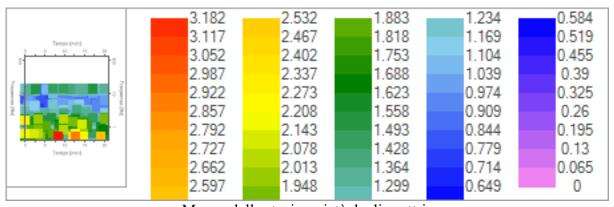
Percentuale di lisciamento: 10.00 %

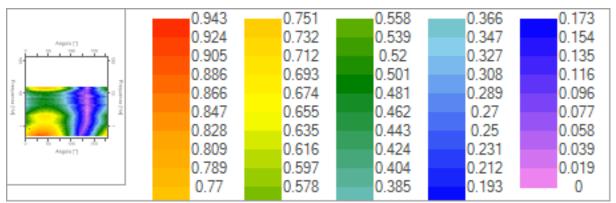

Tabella finestre:

Numero finestra	Istante iniziale	Istante finale	Selezione
1	0	32.763	Inclusa
2	32.763	65.526	Inclusa
3	65.526	98.288	Inclusa
4	98.288	131.051	Inclusa
5	131.051	163.814	Inclusa
6	163.814	196.577	Inclusa
7	196.577	229.34	Inclusa
8	229.34	262.103	Inclusa
9	294.865	327.628	Inclusa
10	327.628	360.391	Inclusa
11	360.391	393.154	Inclusa
12	393.154	425.917	Inclusa
13	425.917	458.679	Inclusa
14	458.679	491.442	Inclusa
15	491.442	524.205	Inclusa
16	524.205	556.968	Inclusa
17	556.968	589.731	Inclusa
18	589.731	622.494	Inclusa
19	688.019	720.782	Inclusa
20	720.782	753.545	Inclusa
21	753.545	786.308	Inclusa
22	786.308	819.071	Inclusa
23	819.071	851.833	Inclusa
24	851.833	884.596	Inclusa
25	884.596	917.359	Inclusa
26	917.359	950.122	Inclusa
27	950.122	982.885	Inclusa
28	982.885	1015.647	Inclusa
29	1015.647	1048.41	Inclusa
30	1048.41	1081.173	Inclusa
31	1081.173	1113.936	Inclusa
32	1146.699	1179.462	Inclusa
33	1179.462	1212.224	Inclusa
34	1212.224	1244.987	Inclusa


Grafici tracce con finestre selezionate:


Traccia e finestre selezionate in direzione Nord-Sud


Traccia e finestre selezionate in direzione Est-Ovest


Traccia e finestre selezionate in direzione Verticale

Spettri medi nelle tre direzioni

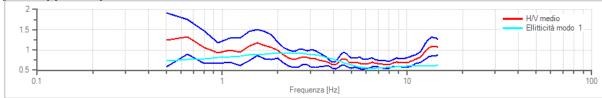
Mappa della stazionarietà degli spettri

Mappa della direzionalità degli spettri

Rapporto spettrale H/V

Dati riepilogativi:

Frequenza massima: 15.00 Hz Frequenza minima: 0.50 Hz Passo frequenze: 0.15 Hz


Tipo lisciamento:: Triangolare proporzionale

Percentuale di lisciamento: 10.00 % Tipo di somma direzionale: Media aritmetica

Risultati:

Frequenza del picco del rapporto H/V: 0.65 Hz ±0.33 Hz

Rapporto spettrale H/V e suo intervallo di fiducia

Verifiche SESAME:

Verifica	Esito
$f_0 > 10/l_w$	Ok
$n_{\sigma}(f_0) > 200$	Ok
$\sigma_A(f) < 2$ per $0.5 \cdot f_0 < f < 2 \cdot f_0$ se $f_0 > 0.5H$ $\sigma_A(f) < 3$ per $0.5 \cdot f_0 < f < 2 \cdot f_0$ se $f_0 < 0.5H$	Ok
$\exists f^- \in [f_0/4, f_0] \mid A_{H/V}(f^-) < A_0/2$	Non superato
$\exists f^+ \in [f_0, 4 \cdot f_0] \mid A_{H/V}(f^+) < A_0/2$	Ok
$A_0 > 2$	Non superato
$f_{picco}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	Ok
$\sigma_f < \varepsilon(f)$	Non superato
$\sigma_A(f_0) < \theta(f_0)$	Ok

Modello stratigrafico

Dati riepilogativi:

Numero strati: 4
Frequenza del picco dell'ellitticità: 2.30 Hz
Valore di disadattamento: 0.32
Valore Vseq: 345.38 m/s

Dati della stratigrafia:

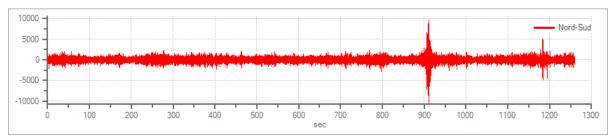
Strato	Profondità [m]	Spessore [m]	Peso per Unità di Vol. [kN/m^3]	Coeff. di Poisson	Velocità onde di taglio [m/s]
1	0	4.96	18.5	0.38	290
2	4.96	4.25	19	0.37	300
3	9.21	9.98	19.5	0.36	300
4	19.19	18	19.9	0.35	485

Profilo delle velocità delle onde di taglio.

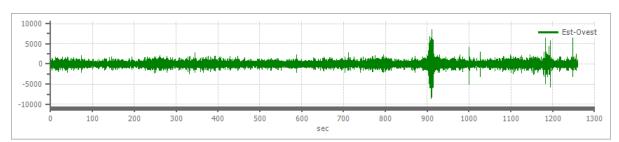
Ubicazione prova HVSR n. 1

Dati generali Prova HVSR n. 2

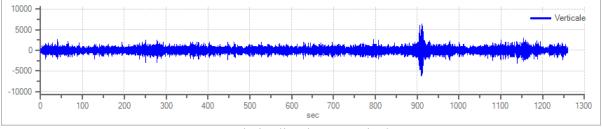
Data: 08/05/2024 00:00:00


Tracce in input

Dati riepilogativi:


Numero tracce: 3
Durata registrazione: 1260 s
Frequenza di campionamento: 156.00 Hz
Numero campioni: 196559

Direzioni tracce: Nord-Sud; Est-Ovest; Verticale.


Grafici tracce:

Traccia in direzione Nord-Sud

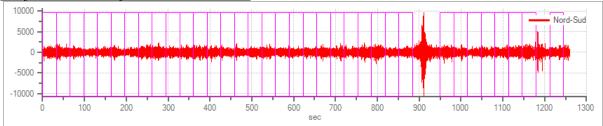
Traccia in direzione Est-Ovest

Traccia in direzione Verticale

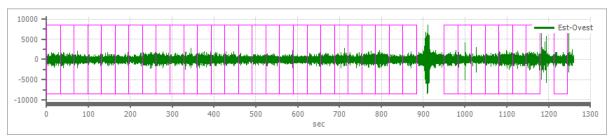
Finestre selezionate

Dati riepilogativi:

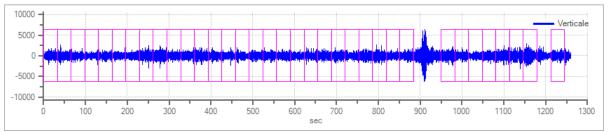
Numero totale finestre selezionate: 35 Numero finestre incluse nel calcolo: 35 Dimensione temporale finestre: 32.763

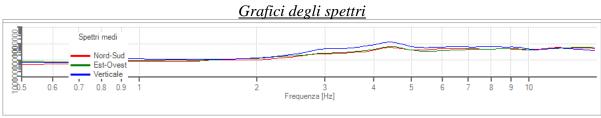

Tipo di lisciamento: Triangolare proporzionale

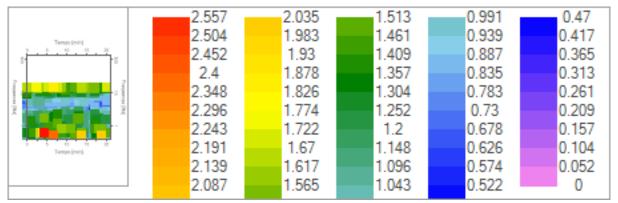
Percentuale di lisciamento: 10.00 %


Tabella finestre:

Numero finestra	Istante iniziale	Istante finale	Selezione
1	0	32.763	Inclusa
2	32.763	65.526	Inclusa
3	65.526	98.288	Inclusa
4	98.288	131.051	Inclusa
5	131.051	163.814	Inclusa
6	163.814	196.577	Inclusa
7	196.577	229.34	Inclusa
8	229.34	262.103	Inclusa
9	262.103	294.865	Inclusa
10	294.865	327.628	Inclusa
11	327.628	360.391	Inclusa
12	360.391	393.154	Inclusa
13	393.154	425.917	Inclusa
14	425.917	458.679	Inclusa
15	458.679	491.442	Inclusa
16	491.442	524.205	Inclusa
17	524.205	556.968	Inclusa
18	556.968	589.731	Inclusa
19	589.731	622.494	Inclusa
20	622.494	655.256	Inclusa
21	655.256	688.019	Inclusa
22	688.019	720.782	Inclusa
23	720.782	753.545	Inclusa
24	753.545	786.308	Inclusa
25	786.308	819.071	Inclusa
26	819.071	851.833	Inclusa
27	851.833	884.596	Inclusa
28	950.122	982.885	Inclusa
29	982.885	1015.647	Inclusa
30	1015.647	1048.41	Inclusa
31	1048.41	1081.173	Inclusa
32	1081.173	1113.936	Inclusa
33	1113.936	1146.699	Inclusa
34	1146.699	1179.462	Inclusa
35	1212.224	1244.987	Inclusa


Grafici tracce con finestre selezionate:


Traccia e finestre selezionate in direzione Nord-Sud


Traccia e finestre selezionate in direzione Est-Ovest

Traccia e finestre selezionate in direzione Verticale

Spettri medi nelle tre direzioni

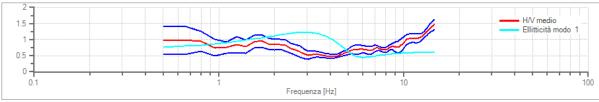
Mappa della stazionarietà degli spettri

Mappa della direzionalità degli spettri

Rapporto spettrale H/V

Dati riepilogativi:

Frequenza massima: 15.00 Hz Frequenza minima: 0.50 Hz Passo frequenze: 0.15 Hz


Tipo lisciamento:: Triangolare proporzionale

Percentuale di lisciamento: 10.00 %
Tipo di somma direzionale: Media aritmetica

Risultati:

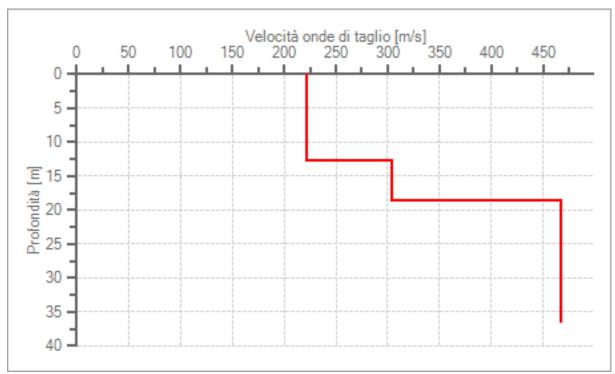
Frequenza del picco del rapporto H/V: 14.75 Hz ±0.11 Hz

Grafico rapporto spettrale H/V

Rapporto spettrale H/V e suo intervallo di fiducia

Verifiche SESAME:

Verifica	Esito
$f_0 > 10/l_w$	Ok
$n_c(f_0) > 200$	Ok
$\sigma_A(f) < 2$ per $0.5 \cdot f_0 < f < 2 \cdot f_0$ se $f_0 > 0.5H$ $\sigma_A(f) < 3$ per $0.5 \cdot f_0 < f < 2 \cdot f_0$ se $f_0 < 0.5H$	Ok
$\exists f^- \in [f_0/4, f_0] \mid A_{H/V}(f^-) < A_0/2$	Ok
$\exists f^+ \in [f_0, 4 \cdot f_0] \mid A_{H/V}(f^+) < A_0/2$	Non superato
$A_0 > 2$	Non superato
$f_{picco}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	Ok
$\sigma_f < \varepsilon(f)$	Ok
$\sigma_A(f_0) < \theta(f_0)$	Ok


Modello stratigrafico

Dati riepilogativi:

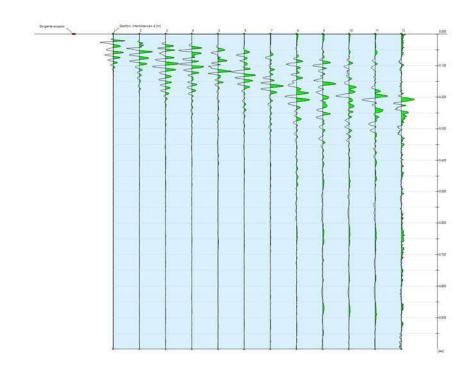
Numero strati: 4
Frequenza del picco dell'ellitticità: 2.90 Hz
Valore di disadattamento: 0.66
Valore Vseq: 296.15 m/s

Dati della stratigrafia:

Strato	Profondità [m]	Spessore [m]	Peso per Unità di Vol. [kN/m^3]	Coeff. di Poisson	Velocità onde di taglio [m/s]
1	0	4.92	18.5	0.38	221
2	4.92	7.78	19	0.37	221
3	12.7	5.98	19.5	0.36	303
4	18.67	18	19.9	0.35	468

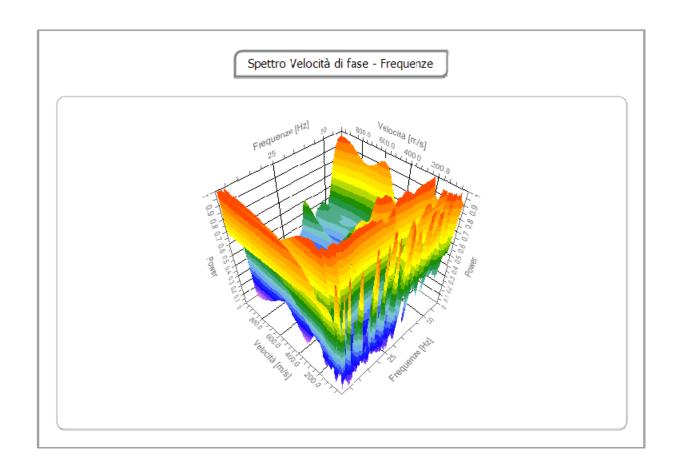
Profilo delle velocità delle onde di taglio.

Ubicazione prova HVSR n. 2

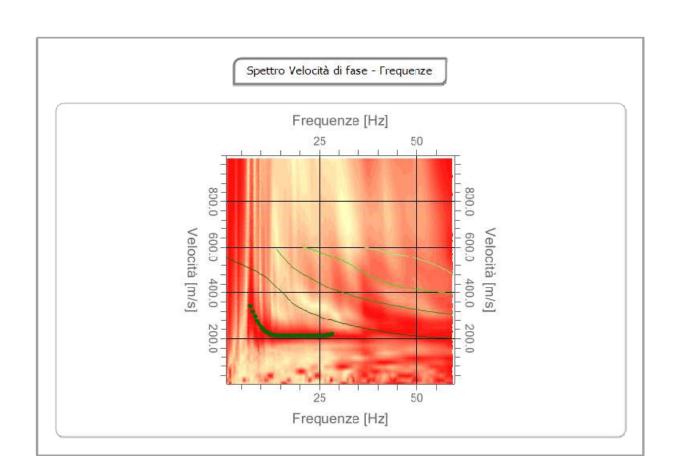

Dati generali MASW n. 3

Data | 08/05/2024 10:04

Tracce


N. tracce	12
Durata acquisizione [msec]	999.0
Interdistanza geofoni [m]	4.0
Periodo di campionamento [msec]	0.478

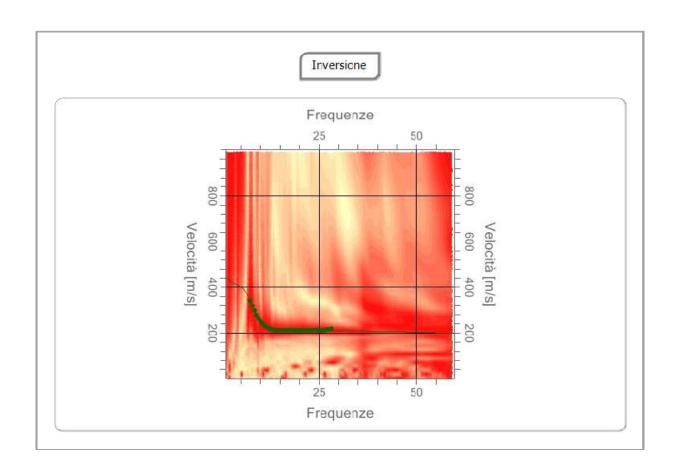
Lunghezza linea sismica 44 metri

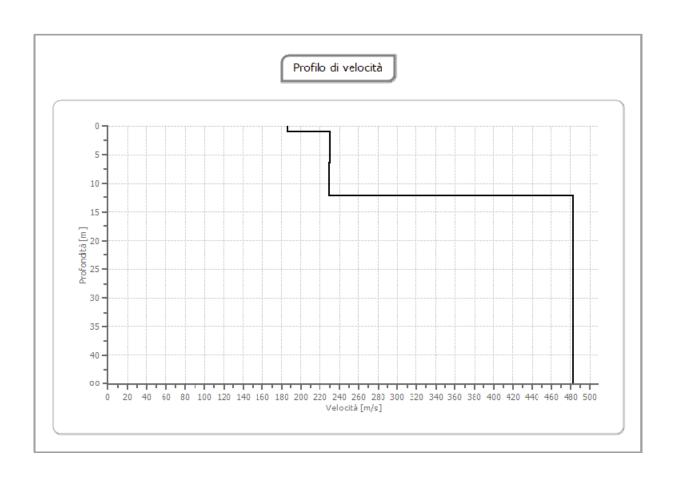

Analisi spettrale

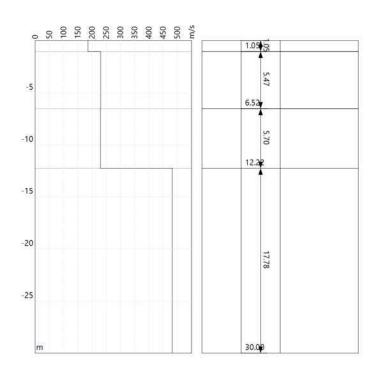
Frequenza minima di elaborazione [Hz]	1
Frequenza massima di elaborazione [Hz]	60
Velocità minima di elaborazione [m/sec]	1
Velocità massima di elaborazione [m/sec]	1000
Intervallo velocità [m/sec]	1

n.	Frequenza	Velocità	Modo
	[Hz]	[m/sec]	
1	7.3	343.4	0
2	7.8	318.0	0
3	8.4	296.5	0
4	8.9	278.4	0
5	9.5	263.4	0
6	10.0	250.9	0
7	10.5	240.8	0
8	11.1	232.6	0
9	11.6	226.2	0
10	12.1	221.1	0
11	12.7	217.4	0
12	13.2	214.6	0
13	13.7	212.8	0
14	14.3	211.6	0
15	14.8	211.1	0
16	15.4	211.0	0
17	15.9	211.1	0
18	16.4	211.4	0
19	17.0	211.7	0
20	17.5	212.1	0
21	18.0	212.5	0
22	18.6	212.8	0
23	19.1	213.2	0
24	19.6	213.4	0
25	20.2	213.6	0

26	20.7	213.7	0
27	21.3	213.7	0
28	21.8	213.7	0
29	22.3	213.5	0
30	22.9	213.3	0
31	23.4	213.0	0
32	23.9	212.8	0
33	24.5	212.5	0
34	25.0	212.4	0
35	25.5	212.4	0
36	26.1	212.6	0
37	26.6	213.2	0
38	27.2	214.3	0
39	27.7	215.9	0
40	28.2	218.3	0




Inversione


n.	Descrizio	Profondit	Spessore	Peso	Coefficie	Falda	Vp	Vs
	ne	à [m]	[m]	unità volume	nte Poisson		[m/sec]	[m/sec]
				[kg/mc]				
1		1.05	1.05	1850.0	0.38	No	421.7	185.5
2		6.52	5.47	1900.0	0.37	No	507.0	230.3
3		12.22	5.70	1950.0	0.36	No	490.4	229.3
4		00	00	1990.0	0.35	No	1004.1	482.4

Percentuale di errore 0.030 %

Fattore di disadattamento della soluzione 0.018

Risultati

Profondità piano di posa [m]	0.00
Vs,eq [m/sec] (H=30.00 m)	329.18
Categoria del suolo	C

Suolo di tipo C: Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

Altri parametri geotecnici

n.	Profo	Spess	Vs	Vp	Densi	Coeffi	G0	Ed	M0	Ey	NSPT	Qc
	ndità [m]	ore [m]	[m/s]	[m/s]	tà [kg/m c]	Poiss on	[MPa]	[MPa]	[MPa]	[MPa]		[kPa]
1	1.05	1.05	185.5 2	421.7 0	1850. 00	0.38	63.67	328.9 8	244.0	175.7 4	N/A	N/A
2	6.52	5.47	230.3	507.0	1900. 00	0.37	100.7	488.4 5	354.0 6	276.1 7	N/A	N/A
3	12.22	5.70	229.3	490.3	1950. 00	0.36	102.5 7	468.8	332.1	278.9 9	N/A	N/A
4	00	00	482.3 5	1004. 09	1990. 00	0.35	463.0	2006. 32	1388. 99	1250. 09	NaN	N/A

G0: Modulo di deformazione al taglio;

Ed: Modulo edometrico;

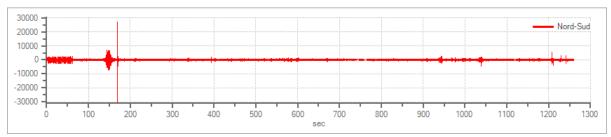
M0: Modulo di compressibilità volumetrica;

Ey: Modulo di Young;

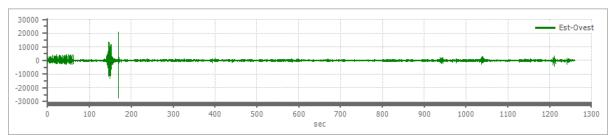
Ubicazione linea sismica MASW n. 3

Dati generali HVSR n. 3

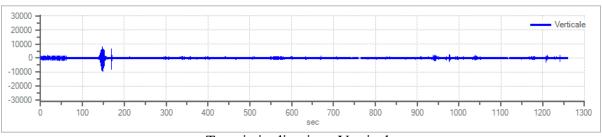
Data: 08/05/2024 00:00:00


Tracce in input

Dati riepilogativi:


Numero tracce: 3
Durata registrazione: 1260 s
Frequenza di campionamento: 156.00 Hz
Numero campioni: 196559

Direzioni tracce: Nord-Sud; Est-Ovest; Verticale.


Grafici tracce:

Traccia in direzione Nord-Sud

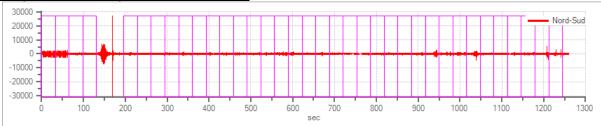
Traccia in direzione Est-Ovest

Traccia in direzione Verticale

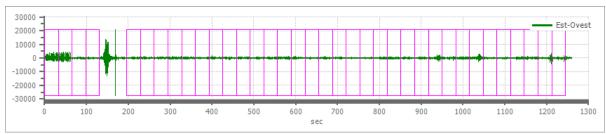
Finestre selezionate

Dati riepilogativi:

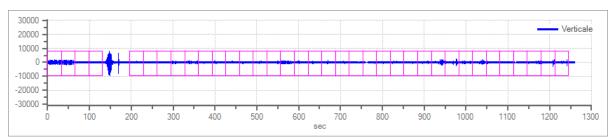
Numero totale finestre selezionate: 36 Numero finestre incluse nel calcolo: 36 Dimensione temporale finestre: 32.763 s

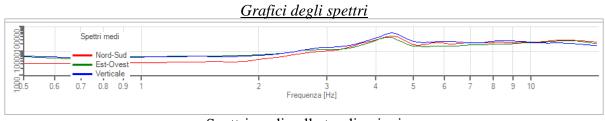

Tipo di lisciamento: Triangolare proporzionale

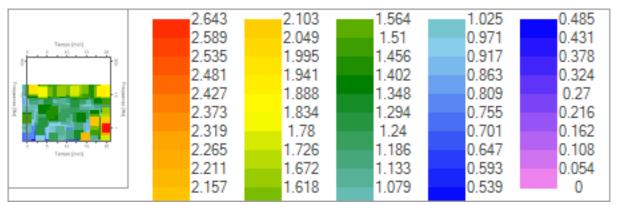
Percentuale di lisciamento: 10.00 %


Tabella finestre:

Numero finestra	Istante iniziale	Istante finale	Selezione
1	0	32.763	Inclusa
2	32.763	65.526	Inclusa
3	65.526	98.288	Inclusa
4	98.288	131.051	Inclusa
5	196.577	229.34	Inclusa
6	229.34	262.103	Inclusa
7	262.103	294.865	Inclusa
8	294.865	327.628	Inclusa
9	327.628	360.391	Inclusa
10	360.391	393.154	Inclusa
11	393.154	425.917	Inclusa
12	425.917	458.679	Inclusa
13	458.679	491.442	Inclusa
14	491.442	524.205	Inclusa
15	524.205	556.968	Inclusa
16	556.968	589.731	Inclusa
17	589.731	622.494	Inclusa
18	622.494	655.256	Inclusa
19	655.256	688.019	Inclusa
20	688.019	720.782	Inclusa
21	720.782	753.545	Inclusa
22	753.545	786.308	Inclusa
23	786.308	819.071	Inclusa
24	819.071	851.833	Inclusa
25	851.833	884.596	Inclusa
26	884.596	917.359	Inclusa
27	917.359	950.122	Inclusa
28	950.122	982.885	Inclusa
29	982.885	1015.647	Inclusa
30	1015.647	1048.41	Inclusa
31	1048.41	1081.173	Inclusa
32	1081.173	1113.936	Inclusa
33	1113.936	1146.699	Inclusa
34	1146.699	1179.462	Inclusa
35	1179.462	1212.224	Inclusa
36	1212.224	1244.987	Inclusa


Grafici tracce con finestre selezionate:


Traccia e finestre selezionate in direzione Nord-Sud


Traccia e finestre selezionate in direzione Est-Ovest


Traccia e finestre selezionate in direzione Verticale

Spettri medi nelle tre direzioni

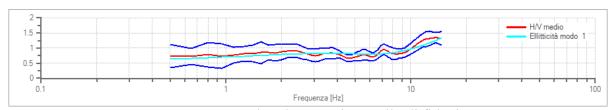
Mappa della stazionarietà degli spettri

Mappa della direzionalità degli spettri

Rapporto spettrale H/V

Dati riepilogativi:

Frequenza massima: 15.00 Hz Frequenza minima: 0.50 Hz Passo frequenze: 0.15 Hz


Tipo lisciamento:: Triangolare proporzionale

Percentuale di lisciamento: 10.00 %
Tipo di somma direzionale: Media aritmetica

Risultati:

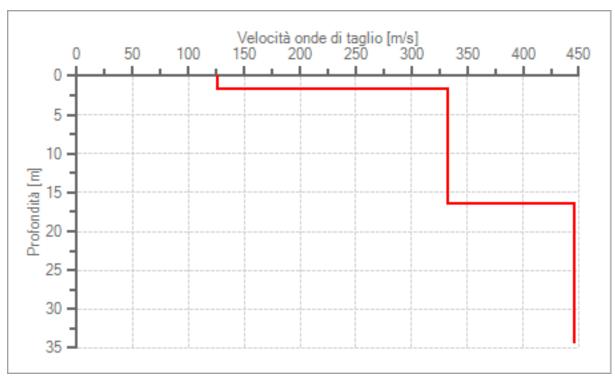
Frequenza del picco del rapporto H/V: $13.70~\text{Hz} \pm 0.13~\text{Hz}$

Grafico rapporto spettrale H/V

Rapporto spettrale H/V e suo intervallo di fiducia

Verifiche SESAME:

Esito
Ok
Ok
Ok
Ok
n superato
n superato
Ok
n superato
Ok
)


Modello stratigrafico

Dati riepilogativi:

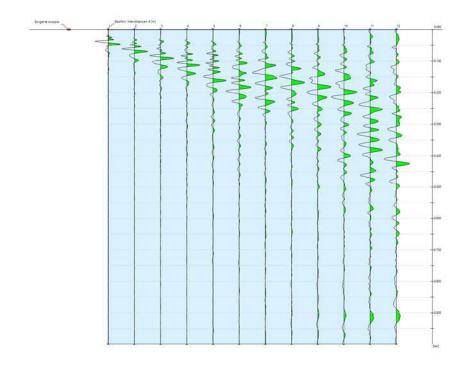
Numero strati: 4
Frequenza del picco dell'ellitticità: 14.75 Hz
Valore di disadattamento: 0.09
Valore Vseq: 340.95 m/s

Dati della stratigrafia:

Strato	Profondità [m]	Spessore [m]	Peso per Unità di Vol. [kN/m^3]	Coeff. di Poisson	Velocità onde di taglio [m/s]
1	0	1.63	18.5	0.38	126
2	1.63	4.78	19	0.37	332
3	6.41	10	19.5	0.36	332
4	16.41	18	19.9	0.35	445

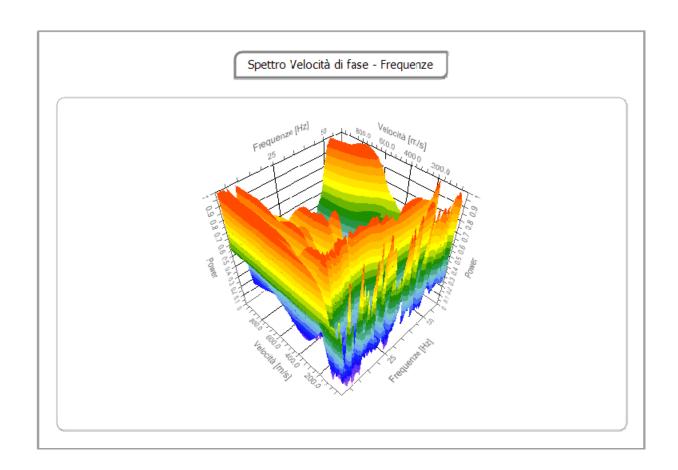
Profilo delle velocità delle onde di taglio.

Ubicazione prova HVSR n. 3

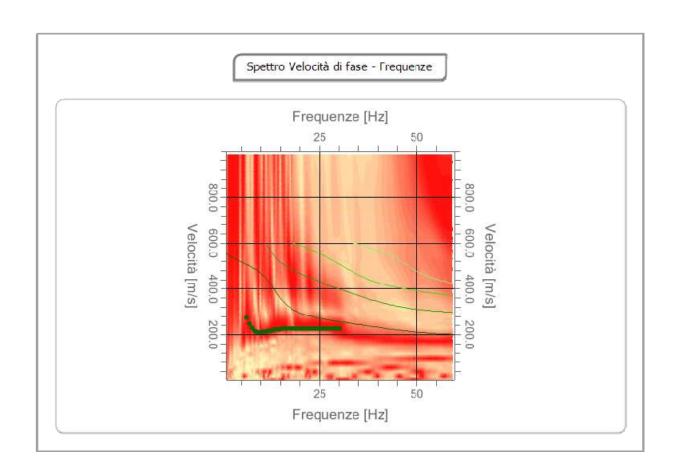

Dati generali MASW n. 2

Data | 09/05/2024 10:45

Tracce


N. tracce	12
Durata acquisizione [msec]	999.0
Interdistanza geofoni [m]	4.0
Periodo di campionamento [msec]	0.478

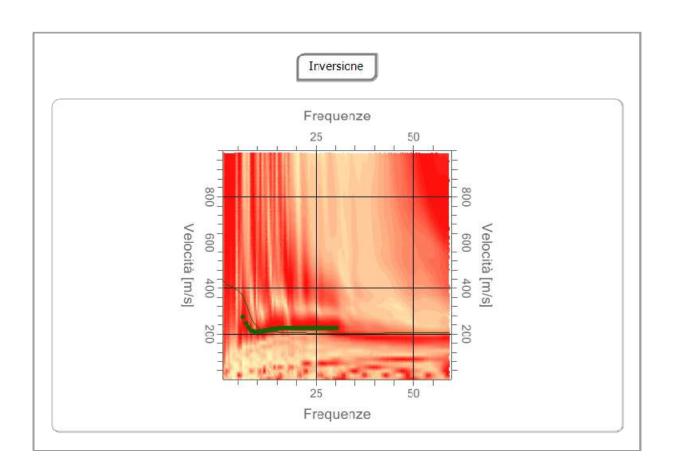
Lunghezza linea sismica 44 metri

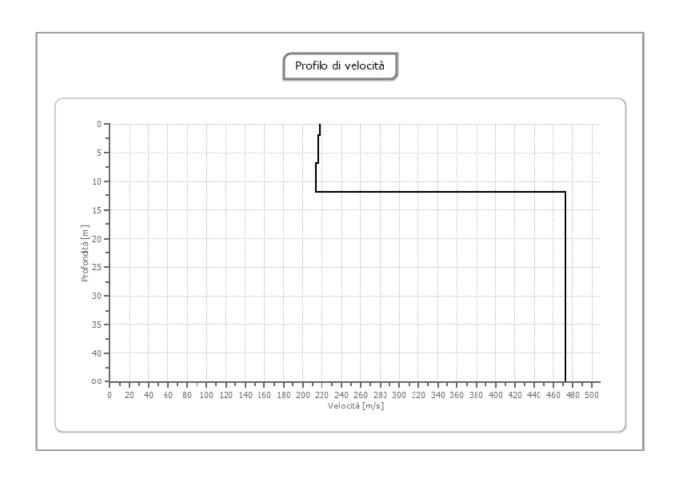

Analisi spettrale

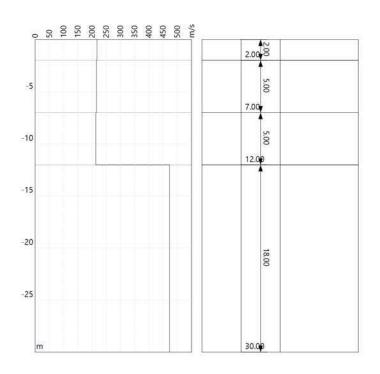
Frequenza minima di elaborazione [Hz]	1
Frequenza massima di elaborazione [Hz]	60
Velocità minima di elaborazione [m/sec]	1
Velocità massima di elaborazione [m/sec]	1000
Intervallo velocità [m/sec]	1

n.	Frequenza	Velocità	Modo
	[Hz]	[m/sec]	
1	6.3	273.1	0
2	6.9	246.3	0
3	7.5	228.3	0
4	8.2	217.2	0
5	8.8	211.4	0
6	9.4	209.5	0
7	10.0	209.9	0
8	10.6	211.2	0
9	11.2	213.1	0
10	11.8	215.3	0
11	12.4	217.5	0
12	13.1	219.5	0
13	13.7	221.4	0
14	14.3	223.0	0
15	14.9	224.4	0
16	15.5	225.4	0
17	16.1	226.1	0
18	16.7	226.6	0
19	17.3	226.9	0
20	18.0	227.0	0
21	18.6	227.1	0
22	19.2	227.0	0
23	19.8	226.9	0
24	20.4	226.8	0
25	21.0	226.7	0

21.6	226.6	0
22.2	226.6	0
22.9	226.5	0
23.5	226.5	0
24.1	226.4	0
24.7	226.2	0
25.3	226.1	0
25.9	225.8	0
26.5	225.5	0
27.2	225.1	0
27.8	224.8	0
28.4	224.5	0
29.0	224.5	0
29.6	224.8	0
30.2	225.7	0
	22.2 22.9 23.5 24.1 24.7 25.3 25.9 26.5 27.2 27.8 28.4 29.0 29.6	22.2 226.6 22.9 226.5 23.5 226.5 24.1 226.4 24.7 226.2 25.3 226.1 25.9 225.8 26.5 225.5 27.2 225.1 27.8 224.8 28.4 224.5 29.0 224.5 29.6 224.8




Inversione


n.	Descrizio	Profondit	Spessore	Peso	Coefficie	Falda	Vp	Vs
	ne	à [m]	[m]	unità volume	nte Poisson		[m/sec]	[m/sec]
		[]		[kg/mc]				
1		2.00	2.00	1850.0	0.38	No	494.4	217.5
2		7.00	5.00	1900.0	0.37	No	474.5	215.6
3		12.00	5.00	1950.0	0.36	No	456.6	213.6
4		00	00	1990.0	0.35	No	983.4	472.4

Percentuale di errore 0.160 %

Fattore di disadattamento della soluzione 0.141

Risultati

Profondità piano di posa [m]	0.00
Vs,eq [m/sec] (H=30.00 m)	319.47
Categoria del suolo	С

Suolo di tipo C: Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

Altri parametri geotecnici

	n.	Profo	Spess	Vs	Vp	Densi	Coeffi	G0	Ed	M0	Ey	NSPT	Qc
		ndità	ore	[m/s]	[m/s]	tà	ciente	[MPa]	[MPa]	[MPa]	[MPa]		[kPa]
		[m]	[m]			[kg/m	Poiss	[1/11 4]	[1/11 4]	[1/11 4]	[1/11 4]		[KI u]
		. ,				c]	on						
-	1	2.00	2.00	217.5	494.4	1850.	0.38	87.54	452.2	335.5	241.6	N/A	N/A
				2	4	00			7	6	0		
		7.00	5.00	215.5	474.5	1000	0.27	00.20	427.0	210.1	241.0	NT/A	NT/A
	2	7.00	5.00	215.5	474.5		0.37	88.29	427.8	310.1	241.9	N/A	N/A
				6	4	00			5	3	1		
ŀ	3	12.00	5.00	213.5	456.5	1950.	0.36	88.93	406.5	287.9	241.8	N/A	N/A
				5	9	00			2	5	8		
	4	00	00	472.4	983.4	1990.	0.35	444.1	1924.	1332.	1199.	NaN	N/A
	4	00	00		903.4		0.55					INaiN	1 N /A
				2	2	00		3	56	39	15		
L		ľ					Ι	1	1	Ι	ľ		

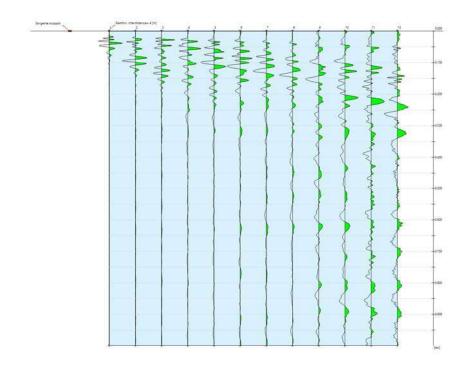
G0: Modulo di deformazione al taglio;

Ed: Modulo edometrico;

M0: Modulo di compressibilità volumetrica;

Ey: Modulo di Young;

Ubicazione linea sismica MASW n. 2

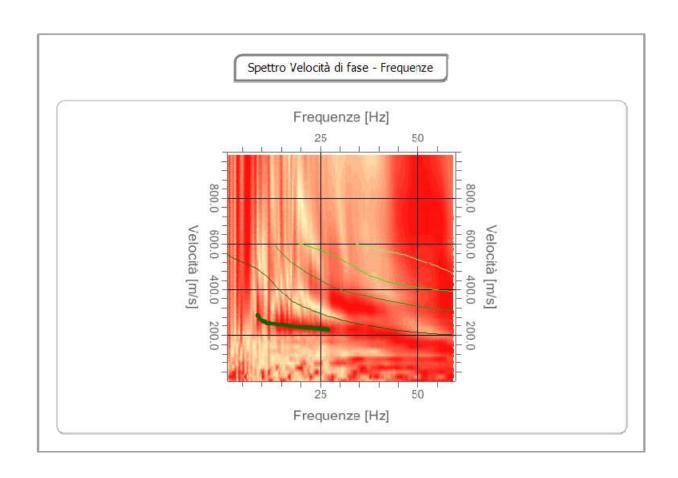

Dati generali MASW n. 4

Data 09/05/2021 13:25

Tracce

N. tracce	12
Durata acquisizione [msec]	999.0
Interdistanza geofoni [m]	4.0
Periodo di campionamento [msec]	0.478

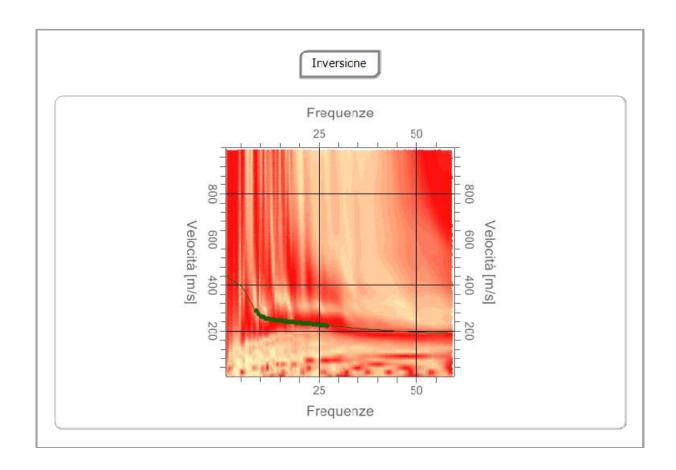
Lunghezza linea sismica 44 metri

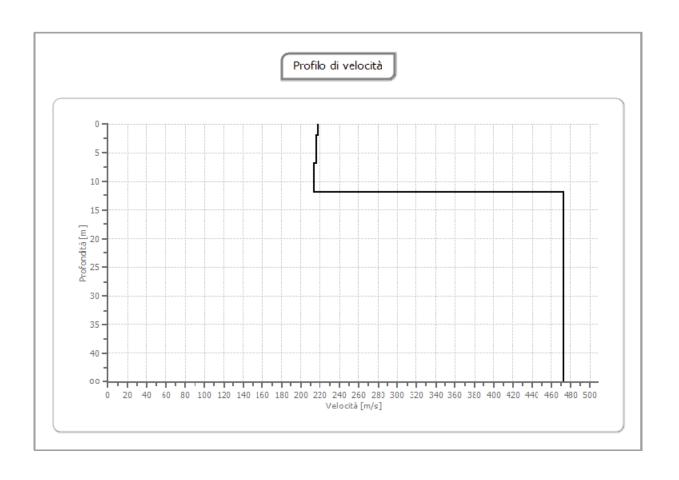

Analisi spettrale

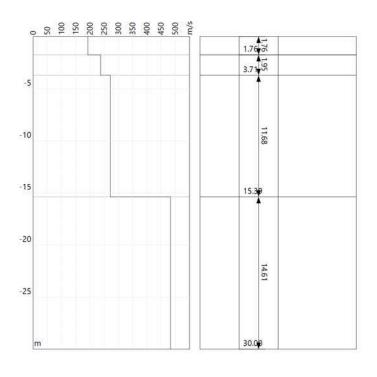
Frequenza minima di elaborazione [Hz]	1
Frequenza massima di elaborazione [Hz]	60
Velocità minima di elaborazione [m/sec]	1
Velocità massima di elaborazione [m/sec]	1000
Intervallo velocità [m/sec]	1

n.	Frequenza	Velocità	Modo
	[Hz]	[m/sec]	
1	8.9	287.5	0
2	9.5	274.1	0
3	10.1	264.9	0
4	10.8	258.6	0
5	11.4	254.4	0
6	12.0	251.7	0
7	12.7	249.8	0
8	13.3	248.4	0
9	13.9	247.3	0
10	14.5	246.2	0
11	15.2	245.0	0
12	15.8	243.8	0
13	16.4	242.4	0
14	17.1	241.0	0
15	17.7	239.6	0
16	18.3	238.3	0
17	19.0	237.0	0
18	19.6	235.8	0
19	20.2	234.8	0
20	20.8	233.8	0
21	21.5	233.0	0
22	22.1	232.2	0
23	22.7	231.5	0
24	23.4	230.7	0
25	24.0	229.8	0

26	24.6	228.8	0
27	25.2	227.5	0
28	25.9	226.1	0
29	26.5	224.5	0
30	27.1	222.9	0




Inversione


n.	Descrizio	Profondit	Spessore	Peso	Coefficie	Falda	Vp	Vs
	ne	à [m]	[m]	unità volume	nte Poisson		[m/sec]	[m/sec]
		[]		[kg/mc]				
1		1.76	1.76	1850.0	0.38	No	437.0	192.3
2		3.71	1.95	1900.0	0.37	No	522.5	237.4
3		15.39	11.68	1950.0	0.36	No	580.4	271.5
4		00	00	1990.0	0.35	No	1006.6	483.5

Percentuale di errore 0.002 %

Fattore di disadattamento della soluzione 0.004

Risultati

Profondità piano di posa [m]	0.00
Vs,eq [m/sec] (H=30.00 m)	331.08
Categoria del suolo	C

Suolo di tipo C: Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

Altri parametri geotecnici

n.	Profo	Spess	Vs	Vp	Densi	Coeffi	G0	Ed	M0	Ey	NSPT	Qc
	ndità [m]	ore [m]	[m/s]	[m/s]	tà [kg/m c]	ciente Poiss on	[MPa]	[MPa]	[MPa]	[MPa]		[kPa]
1	1.76	1.76	192.2	437.0	1850.	0.38	68.39	353.3	262.1	188.7	N/A	N/A
			7	5	00			7	8	7		
2	3.71	1.95	237.3	522.5	1900.	0.37	107.0	518.8	376.0	293.3	N/A	N/A
			7	5	00		6	1	7	3		
3	15.39	11.68	271.4	580.4	1950.	0.36	143.7	656.9	465.3	390.9	N/A	N/A
			8	4	00		1	8	6	0		
4	00	00	483.5	1006.	1990.	0.35	465.2	2016.	1395.	1256.	NaN	N/A
			4	57	00		9	24	86	27		

G0: Modulo di deformazione al taglio;

Ed: Modulo edometrico;

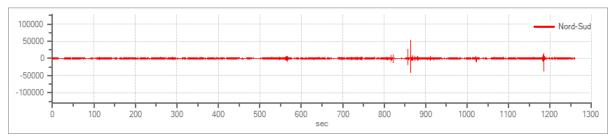
M0: Modulo di compressibilità volumetrica;

Ey: Modulo di Young;

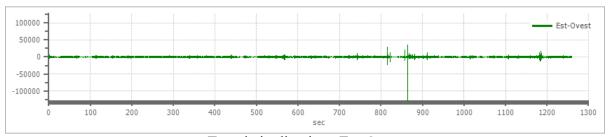
Ubicazione linea sismica MASW n. 4

Dati generali HVSR n. 4

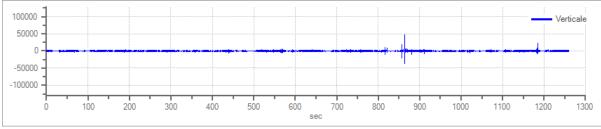
Data: 05/05/2024 00:00:00


Tracce in input

Dati riepilogativi:


Numero tracce: 3
Durata registrazione: 1260 s
Frequenza di campionamento: 156.00 Hz
Numero campioni: 196559

Direzioni tracce: Nord-Sud; Est-Ovest; Verticale.


Grafici tracce:

Traccia in direzione Nord-Sud

Traccia in direzione Est-Ovest

Traccia in direzione Verticale

Finestre selezionate

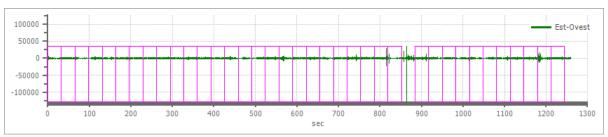
Dati riepilogativi:

Numero totale finestre selezionate: 37 Numero finestre incluse nel calcolo: 37 Dimensione temporale finestre: 32.763 s

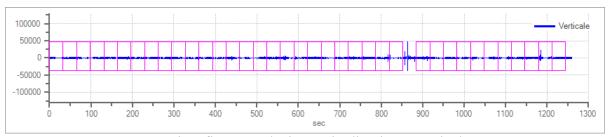
Tipo di lisciamento: Triangolare proporzionale

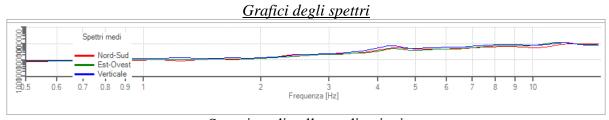

Percentuale di lisciamento: 10.00 %

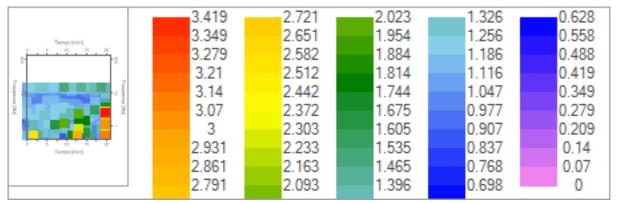
Tabella finestre:

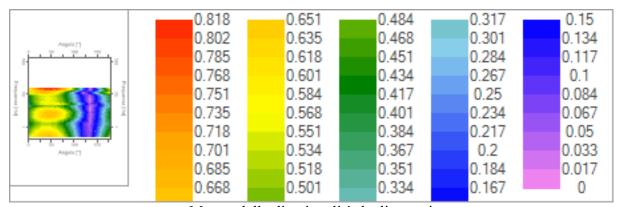

Numero finestra	Istante iniziale	Istante finale	Selezione
1	0	32.763	Inclusa
2	32.763	65.526	Inclusa
3	65.526	98.288	Inclusa
4	98.288	131.051	Inclusa
5	131.051	163.814	Inclusa
6	163.814	196.577	Inclusa
7	196.577	229.34	Inclusa
8	229.34	262.103	Inclusa
9	262.103	294.865	Inclusa
10	294.865	327.628	Inclusa
11	327.628	360.391	Inclusa
12	360.391	393.154	Inclusa
13	393.154	425.917	Inclusa
14	425.917	458.679	Inclusa
15	458.679	491.442	Inclusa
16	491.442	524.205	Inclusa
17	524.205	556.968	Inclusa
18	556.968	589.731	Inclusa
19	589.731	622.494	Inclusa
20	622.494	655.256	Inclusa
21	655.256	688.019	Inclusa
22	688.019	720.782	Inclusa
23	720.782	753.545	Inclusa
24	753.545	786.308	Inclusa
25	786.308	819.071	Inclusa
26	819.071	851.833	Inclusa
27	884.596	917.359	Inclusa
28	917.359	950.122	Inclusa
29	950.122	982.885	Inclusa
30	982.885	1015.647	Inclusa
31	1015.647	1048.41	Inclusa
32	1048.41	1081.173	Inclusa
33	1081.173	1113.936	Inclusa
34	1113.936	1146.699	Inclusa
35	1146.699	1179.462	Inclusa
36	1179.462	1212.224	Inclusa

27	1010 004	1244 007	т 1
.5 /	1212.224	1.244.98 /	Inclusa
<i>C</i> ,	1 = 1 = 1 = 1	1 = 1 0 /	11101000


Grafici tracce con finestre selezionate:


Traccia e finestre selezionate in direzione Nord-Sud


Traccia e finestre selezionate in direzione Est-Ovest


Traccia e finestre selezionate in direzione Verticale

Spettri medi nelle tre direzioni

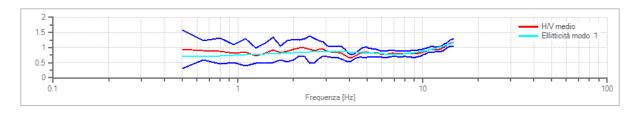
Mappa della stazionarietà degli spettri

Mappa della direzionalità degli spettri

Rapporto spettrale H/V

Dati riepilogativi:

Frequenza massima: 15.00 Hz Frequenza minima: 0.50 Hz Passo frequenze: 0.15 Hz


Tipo lisciamento:: Triangolare proporzionale

Percentuale di lisciamento: 10.00 %
Tipo di somma direzionale: Media aritmetica

Risultati:

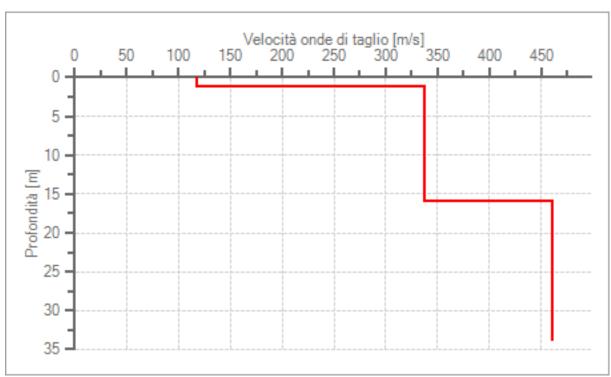
Frequenza del picco del rapporto H/V: $14.75 \text{ Hz} \pm 0.11 \text{ Hz}$

Grafico rapporto spettrale H/V

Rapporto spettrale H/V e suo intervallo di fiducia

Verifiche SESAME:

Verifica	Esito
$f_0 > 10/l_w$	Ok
$n_{c}(f_0) > 200$	Ok
$\sigma_A(f) < 2$ per $0.5 \cdot f_0 < f < 2 \cdot f_0$ se $f_0 > 0.5H$ $\sigma_A(f) < 3$ per $0.5 \cdot f_0 < f < 2 \cdot f_0$ se $f_0 < 0.5H$	Ok
$\exists f^- \in [f_0/4, f_0] \mid A_{H/V}(f^-) < A_0/2$	Non superato
$\exists f^+ \in [f_0, 4 \cdot f_0] \mid A_{H/V}(f^+) < A_0/2$	Non superato
$A_0 > 2$	Non superato
$f_{picco}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	Ok
$\sigma_f < \varepsilon(f)$	Non superato
$\sigma_A(f_0) < \theta(f_0)$	Ok


Modello stratigrafico

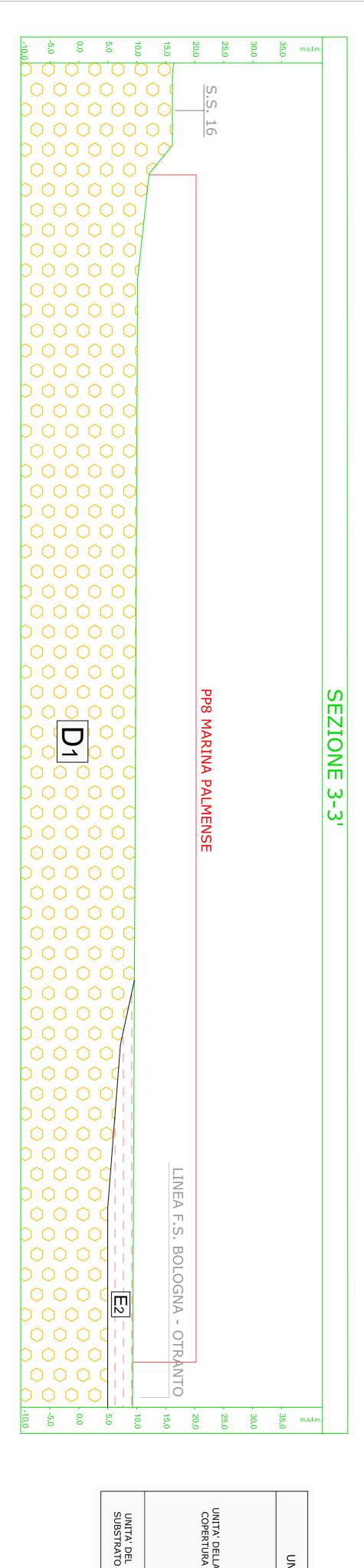
Dati riepilogativi: Numero strati:

Numero strati: 4
Frequenza del picco dell'ellitticità: 14.75 Hz
Valore di disadattamento: 0.08
Valore Vseq: 357.16 m/s

Dati della stratigrafia:

Strato	Profondità [m]	Spessore [m]	Peso per Unità di Vol. [kN/m^3]	Coeff. di Poisson	Velocità onde di taglio [m/s]
1	0	1.12	18.5	0.38	118
2	1.12	4.85	19	0.37	337
3	5.97	10	19.5	0.36	337
4	15.97	18	19.9	0.35	461

Profilo delle velocità delle onde di taglio.


Ubicazione prova HVSR n. 4

DOTT. GEOLOGO FELICE CANTALAMESSA GEOLOGO SPECIALISTA, N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B 3.0 CARATTERISTICHE GENETICHE UNITA' LITOTECNICHE CARATTERISTICHE GRANULOMETRICHE Limi argilloso-sabbiosi, limi inorganici, sabbie fini limose o argillose e limi argillosi di bassa plasticità E₂ Depositi alluvionali LI TOTI PO1 Ghiaie e sabbie con frazione limosa, ghiaie limose e miscela di ghiaie, sabbie e limo UNITA' DELLA COPERTURA D2 LITOTI PO 2 Depositi Colluviali D1 Ghiaie eterometriche, ghiaie pulite con granulometria ben assortita Depositi Alluvionali LITOTIPO 3 Peliti laminate UNITA' DEL SUBSTRATO Depositi Marini LITOTI PO 4 FORMAZIONE DELLE ARGILLE GRIGIO-AZZURRE - Litofacies FAAf LEGENDA INDAGINI GEOGNOSTICHE, GEOTECNICHE E GEOFISICHE

		LEGENDA IND	AGINI GEOGNOSTICILE, GEOTECNICIE E GEOTISICIT	_	
⊕ Sn	Sondaggio geognostico a rotazione a carotaggio continuo	Sn - Cn	Campione di terreno indisturbato a pressione (Shelby)	O DH	Indagine geofisica in foro con tecnica Down Hole
⊕ Sn	Sondaggio geognostico a rotazione a distruzione di nucleo	Sn - Gn	Campione di terreno indisturbato a rotazione (Dennison)	- MASWn	Indagine geofisica con tecnica Multichannel Analysis Surface Wawes
→ PDPSHn	Prova penetrometrica dinamica Deep Penetrometer Super Heavy	Sn - Cn	Campione di terreno irimaneggiato	=== RIFRAn	Indagine geofisica con sismica a rifrazione in onde P ed SH
→ PDPMn	Prova penetrometrica dinamica Deep Penetrometer Medium	O PZn	Piezometro a tubo aperto	HVSRn	Misura passiva microtremori Horizontal to Vertical Spectral Ratio
← CPTn	Prova penetrometrica statica Cone Penetration Test	PCn	Piezometro di Casagrande	— ERTn	Tomografia elettrica
SPTn	Prova Standard Penetration Test in foro di sondaggio	₩ In	Tubo inclinometrico	∭ GPRπ	Indagine Georadar
CARTA GEO-LI	TOLOGICA-TECNICA, Scala 1:2,000	ALLE	GATO 13		

CAR	TA GEO-LITOLOGICA-TECNICA, S	Scala 1:2.0	00			ALLEGATO 13			
Varia	Variante al Piano Particolareggiato PP8 di Marina Palmense Comune di Fermo (FM)								
02		ý.	ű.						
01			-						
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Car	talamessa Felice			
REV.	DESCRIZIONE	DATA	PREPARATO	RIESAMINATO		VALIDATO			
	OPERA DELL'INGEGNO - RIPROI	DIJZIONE VIETA	ATA OGNI DIRITTO RISI	FRVATO = ART QQ I	633/	'4 1			

UNITA' LITOTECNICHE

D₂

Ghiaie

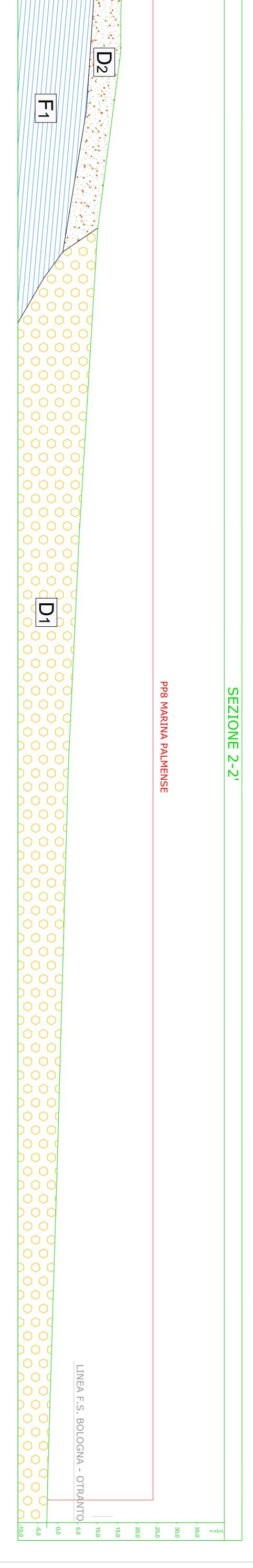
Peliti laminate FORMAZIONE DELLE ARGILLE GRIGIO-AZZURRE - Litofacies FAAf

eterometriche, ghiaie pulite con granulometria ben assortita

Depositi Alluvionali

Depositi Marini

frazione limosa, ghiaie limose e miscela di ghiaie, sabbie e limo **E**2

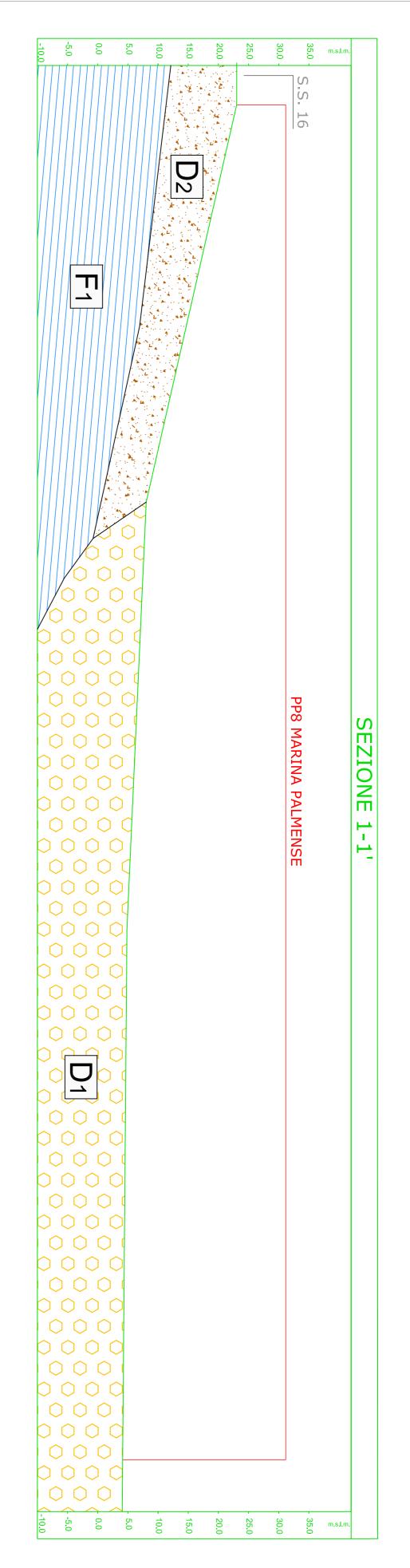

Limi argilloso-sabbiosi, limi inorganici, sabbie fini limose o argillose e limi argillosi di bassa plasticità

Depositi alluvionali

CARATTERISTICHE GENETICHE

Depositi Colluviali

CARATTERISTICHE GRANULOMETRICHE



15.0

25.0

S

16

DOTT. GEOLOGO FELICE CANTALAMESSA GEOLOGO SPECIALISTA, N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.GANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A4628

DOTT. GEOLOGO FELICE CANTALAMESSA

GEOLOGO SPECIALISTA, N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

LEGENDA CARTA DELLA PERICOLOSITA' GEOLOGICA


AREA A PERICOLOSITA GEOLOGICA MOLTO BASSA

Affioramento di depositi granulari prevalentemente sciolti ed in subordine coesivi su aree sub-paineggianti.

AREA A PERICOLOSITA

GEOLOGICA BASSA
Affioramento di depositi granulari sciolti con discrete caratteristiche geotecniche su aree di versante.

AREA A PERICOLOSITA GEOLOGICA MOLTO ELEVATA

1:Piano Assetto Idrogeologico (P.A.I.) - D.S. AUBAC n. 140 del 27.10.2021. Perimetrazione area a rischio idrogeologico per esondazione E-24-0001, con grado di rischio molto elevato "R4" del Piano Assetto Idrogeologico (P.A.I.).

2:Piano Gestione Integrata delle Zone Costiere (G.I.Z.C.) - D.G.R.M. n 1015 del 08/08/2022. Perimetrazione aree a pericolosità con tempi di ritorno zona Tr>100 "scarsa probabilità di alluvioni o scenari di eventi estremi", di cui alla direttiva europea 2007/60/CE (Direttiva Alluvioni).

CAR	TA DELLA PERICOLOSITA' GEOLO	GICA, Scal	a 1:2.000		ALLEGATO 15
Varia	nte al Piano Particolareggiato PP8 di Marina	a Palmense. Co	omune di Fermo (FM)		
02					
01					
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice
REV.	DESCRIZIONE	DATA	PREPARATO	RIESAMINATO	VALIDATO
	OPERA DELL'INGEGNO — RIPROI	DUZIONE VIETA	ATA, OGNI DIRITTO RIS	ERVATO – ART. 99 L.	633/41

DOTT. GEOLOGO FELICE CANTALAMESSA

GEOLOGO SPECIALISTA, N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE
VIA UMBERO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

AREE CON GRADO DI ACCLIVITA' BASSO (p<10%)

AREE CON CON GRADO DI ACCLIVITA' MEDIO (10%<p<20%)

LEGENDA CARTA CLIVOMETRICA

CAR	TA CLIVOMETRICA, Scala 1:2.00	0			ALLEGATO 16
Varia	nte al Piano Particolareggiato PP8 di Marina	Palmense. Co	omune di Fermo (FM)		
02					
UZ	ti.				
01					
01	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice

DOTT. GEOLOGO FELICE CANTALAMESSA

GEOLOGO SPECIALISTA, N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A4628

LEGENDA CARTA PERICOLOSITA' SISMICA LOCALE

GRADO DI PERICOLOSITA' SISMICA LOCALE MEDIO

Aree di versante caratterizzate da medio grado di acclività, con presenza di una coltre detritica di genesi colluviale con litotipi granulari sciolti (D2) con discrete caratteristiche geotecniche, che poggia sul substrato pelitico laminato e sovraconsolidato (F1) ed aree di piana costiera sub-pianeggiante, con sedimenti di origine alluvionale prevalentemente sciolti (D1) ed in subordine coesivi (E2) ed in presenza di falda idrica. Per possibili fenomeni di amplificazione sismica dovuta alla differente risposta tra substrato e copertura. Al fine di valutare quantitativamente l'amplificazione sismica potranno essere effettuate specifiche analisi numeriche di risposta sismica locale.

CARTA DELLA PERICOLOSITA' SISMICA LOCALE, Scala 1:2.000									
Variante al Piano Particolareggiato PP8 di Marina Palmense Comune di Fermo (FM)									
02									
01									
00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice				
REV.	DESCRIZIONE	DATA	PREPARATO	RIESAMINATO	VALIDATO				
OPERA DELL'INGEGNO — RIPRODUZIONE VIETATA, OGNI DIRITTO RISERVATO ■ ART. 99 L. 633/41									

DOTT. GEOLOGO FELICE CANTALAMESSA

GEOLOGO SPECIALISTA, N. 873 ALBO SEZIONE A, ORDINE DEI GEOLOGI DELLE MARCHE VIA UMBERO GIORDANO N. 5 - 63100 ASCOLI PICENO (AP) - TELEFAX 0736.254679 MOBILE 349/2728161 - E-MAIL: FELICE.CANTALAMESSA@GMAIL.COM P. IVA 02359090442 PEC: FELICE.CANTALAMESSA@PEC.IT - C.F.: CNTFLC74R05A462B

LEGENDA CARTA DELLA VOCAZIONALITA'

GRADO DI VOCAZIONALITA' ELEVATA

Aree di versante con medio grado di acclività con presenza di una coltre detritica di origine colluviale granulare sciolta (D2) con discrete caratteristiche geotecniche, che poggia sul substrato pelitico laminato e sovra-consolidato (F1), con grado medio di pericolosità sismica locale.

Aree di piana costiera sub-pianeggiante con sedimenti di origine alluvionale granulari prevalentemente sciolti (D1) ed in subordine coesivi (E2) ed in presenza di falda idrica, che poggiano sul substrato pelitico laminato e sovra-consolidato (F1), con grado medio di pericolosità sismica.

La trasformazione è consentita previo studio geologico-geotecnico e sismico di dettaglio ai sensi del D.M. 11/03/1988 e con le relative verifiche di sicurezza previste dal D.M. 17/01/2018, al fine di analizzare, in sede esecutiva, l'interazione terreno-strutture e verificare le migliori condizioni per garantire l'efficacia e l'efficienza degli interventi previsti Nelle aree, in cui in sede di indagine in sito si riscontri la presenza delle fattispecie predisponenti a fenomeni di liquefazione previste dal D.M. 17/01/2018, l'edificazione è condizionata all'esito della verifica della stabilità del sito alla liquefazione.

Al fine di valutare quantitativamente l'amplificazione sismica potranno essere effettuate specifiche analisi

numeriche di risposta sismica locale.

AREE NON VOCATE

Aree a pericolosità geologica molto elevata:

1 - Piano Assetto Idrogeologico (P.A.I.) - D.S. AUBAC n. 140 del 27.10.2021. Perimetrazione area a rischio idrogeologico per esondazione E-24-0001, con grado di rischio molto elevato "R4" del Piano Assetto Idrogeologico (P.A.I.).).

2 - Piano Gestione Integrata delle Zone Costiere (G.I.Z.C.) - D.G.R.M. n 1015 del 08/08/2022. Perimetrazione aree a pericolosità con tempi di ritorno zona Tr>100 "scarsa probabilità di alluvioni o scenari di eventi estremi", di cui alla direttiva europea 2007/60/CE (Direttiva Alluvioni).

Per il passaggio al grado di vocazionalità elevato dovranno essere effettuati e collaudati specifici interventi che consentano l'eliminazione di tutte le criticità idrauliche.

	CAR	ARTA DELLA VOCAZIONALITA', Scala 1:2.000								
Variante al Piano Particolareggiato PP8 di Marina Palmense, Comune di Fermo (FM)										
	02		e .							
	01									
	00	Prima emissione	21/05/2024	Cantalamessa Felice	Cantalamessa Felice	Cantalamessa Felice				
	REV.	DESCRIZIONE	DATA	PREPARATO	RIESAMINATO	VALIDATO				
	OPERA DELL'INGEGNO — RIPRODUZIONE VIETATA, OGNI DIRITTO RISERVATO ≔ ART. 99 L. 633/41									